
User’s Manual for elegant

Program Version 2019.4

Advanced Photon Source

Michael Borland, Tim Berenc

December 10, 2019

Note: another source of help for elegant is the on-line forum. Users are encouraged to join
and participate. At minimum, users should subscribe to the “Bugs” topic, since this is where bug
notifications are posted.

A set of examples and scripts is available from the software download page that demonstrates
many features of elegant. A brief overview of elegant is also available, which introduces the
capabilities at a high level.

1 Highlights of What’s New in Version 2019.4.0

Here is a summary of what’s changed since release 2019.3.0. Historical change logs are collected in
Section 13.

1.1 Bug Fixes for Elements

• The ILMATRIX element lacked path-length terms related to the betatron amplitude, and also
did not properly handle non-zero αx,y and η′x,y, as pointed out by forum user Teresia.

• A bug was fixed in back-tracking for SBEN elements with nonzero values for HGAP and FINT.
This was reported by Y. Park (UCLA).

1.2 Bug Fixes for Commands

• The bunched_beam command was not generating particle ID values when use_moments_output_values=1,
as reported by Z. Duan (IHEP).

1.3 New and Modified Elements

• Added SPARSE_INTERVAL parameter to the WATCH element, to allow sparsing coordinate out-
put with regular spacing. This supplements the FRACTION parameter, which provides random
sampling, and the START_PID and END_PID parameters, which provide sampling of a subset
defined by particle ID.

• Added RPN_PARAMETERS parameter to the SCRIPT element, which directs the program to load
SDDS parameter values from the script output file into rpn variables, where they may be
used for optimization. This provides the user the ability to perform script-based analysis of
particle distributions and then optimize the results of that analysis.

1

https://www3.aps.anl.gov/forums/elegant/
http://ops.aps.anl.gov/elegant.html

• The N_BINS parameter of the WAKE and TRWAKE elements now defaults to zero, which prevents
some undesirable behavior when warnings are overlooked. This was requested by R. Lindberg
(ANL).

• The EDRIFT, EHVCOR, EHCOR, EVCOR, CSBEND, KQUAD, KSEXT, KOCT, and UKICKMAP elements can
now be used with back-tracking (see run_setup).

1.4 New and Modified Commands

• The chaos_map command is now available. As the name suggests, it is similar to a frequency
map, but provides other measures of chaotic motion. This includes a promising new approach
outlined by Y. Li et al. [56].

• The optimization_variable command has a new parameter differential_limits, which
permits specifying that the lower and upper limits are being given relative to the initial value,
rather than in absolute terms.

• The tune_footprint command has a new parameter separate_xy_for_delta, which per-
mits specifying that tracking for the x and y momentum-dependent tunes should be done
either in a combined fashion (default) or separately. The latter might be helpful if nonlinear
coupling of y motion into the x plane causes the x tune to be poorly determined for small x
amplitudes.

• Added egaussian mode to the ion_effects command. This mode results in computation
of the fields from the electrons assuming a gaussian distribution, as normal, but determines
the kick to the ions based purely on momentum conservation. This was inspired by the work
of M. Blasciewicz (BNL) and implemented with J. Calvey (ANL).

• Added multiple_ionization_energy_peak and multiple_ionization_energy_rmsparam-
eters to the ion_effects command, allowing control of the peak and rms energy of ions
produced by multiple ionization. This was done by J. Calvey (ANL).

1.5 Changes Specific to the MPI Parallel Version

• None.

1.6 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

1.7 Changes to Related Programs and Files

• None.

2

1.8 Known Bugs, Problems, and Limitations

• Floor coordinates are not correct followng a BRAT element.

• The REFERENCE_CORRECTION feature of the CSBEND element is ignored while performing cal-
culations related to the moments_output command.

• Setting CHANGE_T=1 on RFCA and RFCW elements can give invalid results when tracking beams
with very large time spread compared to the bunch length.

• Twiss output contains entries for the higher-order dispersion, tune shifts with amplitude,
higher-order chromaticity, and tune spreads due to chromaticity and amplitude even when
these are not calculated, which is potentially misleading. The values are zero when the calcu-
lation is not requested.

• Computation of closed orbits and Twiss parameters will not always include the effects of
synchrotron radiation losses when these are imposed using SREFFECTS elements. See the
documentation for SREFFECTS for details.

• Computation of beam moments does not include synchrotron radiation effects from UKICKMAP

elements.

• The file created with the parameters field of run_setup does not contain any non-numerical
parameters of the lattice.

• Computation of radiation integrals does not include the effect of steering magnets.

• There is a bug related to using ILMATRIX that will result in a crash if one does not request
computation of the twiss parameters. If you encounter this problem, just add the following
statement after the run_setup command:

&twiss_output

matched = 1

&end

• The OUTPUT_FILE feature of the TFBDRIVER will produce a file with missing data at the end
of the buffer if the OUTPUT_INTERVAL parameter is not a divisor of the number of passes.

• When the KQUAD element was split (with the divide_elements command or element_divisions,
any edge multipoles get evaluated at the interior boundaries. In addition, the LEFFECTIVE

cannot be used.

2 Credits

Contributors to elegant include M. Borland, M. Carla’, N. Carmignani, M. Ehrlichman, L. Emery,
W. Guo, R. Lindberg, V. Sajaev, R. Soliday, Y.-P. Sun, C.-X. Wang, Y. Wang, Y. Wu, and A.
Xiao. Contributors to related programs and scripts include M. Borland, R. Dejus, L. Emery, A.
Petrenko, H. Shang, Y. Wang, A. Xiao, and B. Yang. R. Soliday is responsible for multi-platform
builds and distribution. Of course, we also appreciate the many suggestions, comments, and bug
reports from users.

If you use elegant in your research, we appreciate a citation. For elegant, the citation is

3

M. Borland, ”elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation,” Advanced
Photon Source LS-287, September 2000.

Additional contributors for the parallel version include Y. Wang and H. Shang. The additional
citation for Pelegant is

Y. Wang and M. Borland, ”Pelegant: A Parallel Accelerator Simulation Code for Electron
Generation and Tracking”, Proceedings of the 12th Advanced Accelerator Concepts Workshop,
AIP Conf. Proc. 877, 241 (2006).

Additional contributors for the GPU version include K. Amyx, J. R. King, and I. V. Pogorelov.
The additional citation for the GPU version is

I. V. Pogorelov, J. R. King, K. M. Amyx, M. Borland, and R. Soliday, “Current status of the
GPU-accelerated ELEGANT,” Proceedings of 2015 International Particle Accelerator Conference,
623 (2015).

3 Introduction

elegant stands for “ELEctron Generation ANd Tracking,” a somewhat out-of-date description
of a fully 6D accelerator program that now does much more than generate particle distributions
and track them. elegant, written entirely in the C programming language[1], uses a variant of
the MAD[2] input format to describe accelerators, which may be either transport lines, circular
machines, or a combination thereof. Program execution is driven by commands in a namelist
format.

This document describes the features available in elegant, listing the commands and their
arguments. The differences between elegant and MAD formats for describing accelerators are
listed. A series of examples of elegant input and output are given. Finally, appendices are
included describing the post-processing programs.

3.1 Program Philosophy

For all its complexity, elegant is not a stand-alone program. For example, most of the output is
not human-readable, and elegant itself has no graphics capabilities. These tasks are handled by a
suite of post-processing programs that serve both elegant and other physics programs. These pro-
grams, collectively known as the SDDS Toolkit[8, 9], provide sophisticated data analysis and display
capabilities. They also serve to prepare input for elegant, supporting multi-stage simulation.

Setting up for an elegant run thus involves more than creating input files for elegant per se.
A complicated run will typically involve creation of a post-processing command file that processes
elegant output and puts it in the most useful form, typically a series of graphs. Users thus have the
full power of the SDDS Toolkit, the resident command interpreter (e.g., the UNIX shell), and their
favorite scripting language (e.g., Tcl/Tk) at their disposal. The idea is that instead of continually
rewriting the physics code to, for example, make another type of graph or squeeze another item
into a crowded table, one should allow the user to tailor the output to his specific needs using a
set of generic post-processing programs. This approach has been quite successful, and is believed
particularly suited to the constantly changing needs of research.

Unlike many other programs, elegant allows one to make a single run simulating an arbitrary
number of randomizations or variations of an accelerator. By using the SDDS toolkit to postprocess
the data, the user’s postprocessing time and effort do not depend on how many random seeds or

4

situations are chosen. Hence, instead of doing a few simulations with a few seed numbers or values,
the user can simulate hundreds or even thousands of instances of one accelerator to get an accurate
representation of the statistics or dependence on parameters, with no more work invested than in
doing a few simulations.

In addition, complex simulations such as start-to-end jitter simulations[11] and top-up tracking[12]
can be performed involving hundreds or thousands of runs, with input created by scripts depending
on the SDDS toolkit. These simulations make use of concurrent computing on about 20 workstation
using the Distributed Queueing System[10]. Another example is the elegantRingAnalysis script,
which allows using many workstations for simulation of storage ring dynamic and momentum aper-
ture, frequency maps, and so on. Clearly, use of automated postprocessing tools greatly increases
the scale and sophistication of simulations possible.

In passing, we note another “philosophical” point about elegant, namely, the goal of complete
backward compatibility. We consider it unacceptable if a new version of the program gives different
answers than an old version, unless the old version was wrong. Hence, there are sometimes less-
than-ideal default settings in elegant, incorrect spelling of parameters, etc., that are never fixed,
because doing so would break old input files. It helps to read the manual pages carefully for the
more complex features to ensure that the defaults are understood and appropriate.

3.2 Capabilities of elegant

elegant started as a tracking code, and it is still well-suited to this task. elegant tracks in
the 6-dimensional phase space (x, x′, y, y′, s,ffi), where x (y) is the horizontal (vertical) transverse
coordinate, primed quantities are slopes, s is the total, equivalent distance traveled, and δ is the
fractional momentum deviation[3]. Note that these quantities are commonly referred to as (x, xp,
y, yp, s, dp) in the namelists, accelerator element parameters, and output files. (“dp” is admittedly
confusing—it is supposed to remind the user of ∆P/Po. Sometimes this quantity is referred to as
“delta.”)

Tracking may be performed using matrices (of selectable order), canonical kick elements, numer-
ically integrated elements, or any combination thereof. For most elements, second-order matrices
are available; matrix concatenation can be done to any order up to third. Canonical kick ele-
ments are available for bending magnets, quadrupoles, sextupoles, and higher-order multipoles; all
of these elements also support optional classical synchrotron radiation losses. Among the numer-
ically integrated elements available are extended-fringe-field bending magnets and traveling-wave
accelerators. A number of hybrid elements exist that have first-order transport with exact time
dependence, e.g., RF cavities. Some of the more unusual elements available are third-order alpha-
magnets[5, 4], time-dependent kicker magnets, voltage-ramped RF cavities, beam scrapers, and
beam-analysis “screens.”

Several elements support simulation of collective effects, such as short- and long-range wake-
fields, resonator impedances, intra-beam scattering, coherent synchrotron radiation, and the longi-
tudinal space charge impedance.

A wide variety of output is available from tracking, including centroid and sigma-matrix output
along the accelerator, phase space output at arbitrary locations, turn-by-turn moments at arbitrary
locations, histograms of particle coordinates, coordinates of lost particles, and initial coordinates of
transmitted particles. In addition to tracking internally generated particle distributions, elegant
can track distributions stored in external files, which can either be generated by other programs
or by previous elegant runs. Because elegant uses SDDS format for reading in and writing out
particle coordinates, it is relatively easy to interface elegant to other programs using files that can
also be used with SDDS to do post-processing for the programs.

5

elegant allows the addition of random errors to virtually any parameter of any accelerator
element. One can correct the orbit (or trajectory), tunes, and chromaticity after adding errors,
then compute Twiss parameters, track, or perform a number of other operations. elegant makes
it easy to evaluate a large number of ensembles (“seeds”) in a single run. Alternatively, different
ensembles can be readily run of different CPUs and the SDDS output files combined.

In addition to randomly perturbing accelerator elements, elegant allows one to systematically
vary any number of elements in a multi-dimensional grid. As before, one can track or do other
computations for each point on the grid. This is a very useful feature for the simulation of experi-
ments, e.g., emittance measurements involving beam-size measurements during variation of one or
more quadrupoles[6].

Like many accelerator codes, elegant does accelerator optimization. It will optimize a user
defined function of the transfer matrix elements (up to third-order), beta functions, tunes, chro-
maticities, radiation integrals, natural emittance, floor coordinates, beam moments, etc. It also has
the ability to optimize results of tracking using a user-supplied function of the beam parameters at
one or more locations. This permits solution of a wide variety of problems, from matching a kicker
bump in the presence of nonlinearities to optimizing dynamic aperture by adjusting sextupoles.

elegant provides several methods for determining accelerator aperture, whether dynamic or
physical. One may do straightforward tracking of an ensemble of particles that occupies at uniform
grid in (x, y) space. One may also invoke a search procedure that finds the aperture boundary. A
related feature is the ability to determine the frequency map for an accelerator, to help identify
aperture-limiting resonances.

In addition to using analytical expressions for the transport matrices, elegant supports compu-
tation of the first-order matrix and linear optics properties of a circular machine based on tracking.
A common application of this is to compute the tune and beta-function variation with momentum
offset by single-turn tracking of a series of particles. This is much more efficient than, for example,
tracking and performing FFTs (though elegant will do this also). This both tests analytical ex-
pressions for the chromaticity and allows computations using accelerator elements for which such
expressions do not exist (e.g., a numerically integrated bending magnet with extended fringe fields).

A common application of random error simulations is to set tolerances on magnet strength
and alignment relative to the correctability of the closed orbit. A more efficient way to do these
calculations is to use correct-orbit amplification factors[6]. elegant the computes amplification
factors and functions for corrected and uncorrected orbits and trajectories pertaining to any element
that produces an orbit or trajectory distortion. It simultaneously computes the amplification
functions for the steering magnets, in order to determine how strong the steering magnets will need
to be.

4 Digression on the Longitudinal Coordinate Definition

A word is in order about the definition of s, which we’ve described as the total, equivalent distance
traveled. First, by total distance we mean that s is not measured relative to the bunch center or
a fiducial particle. It is entirely a property of the individual particle and its path through the
accelerator.

To explain what we mean by equivalent distance, note that the relationship between s and
arrival time t at the observation point is, for each particle, s = βct, where βc is the instantaneous
velocity of the particle. Whenever a particle’s velocity changes, elegant recomputes s to ensure
that this relationship holds. s is thus the “equivalent” distance the particle would have traveled
at the present velocity to arrive at the observation point at the given time. This book-keeping is

6

required because elegant was originally a matrix-only code using s as the longitudinal coordinate.
Users should keep the meaning of s in mind when viewing statistics for s, for example, in the

sigma or watch point output files. A quantity like Ss is literally the rms spread in s. It is not
defined as σt/(〈β〉c). A nonrelativistic beam with velocity spread will show no change in Ss in a
drift space, because the distance traveled is the same for all particles.

5 Fiducialization in elegant

In some tracking codes, there is a “fiducial particle” that is tracked along with the beam. This
particle follows the ideal trajectory or orbit, with the ideal momentum, and at the ideal phase.
There is no fiducial particle in elegant. Instead, fiducialization is typically based on statistical
properties of the bunch. This can be performed on a bunch-by-bunch basis, or for the first bunch
seen in a run. The latter method must be used if one wants to look at the effects of changing phase,
voltage, or magnets relative to some nominal configuration.

Internally, elegant fiducializes each element in the beamline. Fiducializing an element means
determining the reference momentum and arrival time (or phase) for that element. If the reference
momentum does not change along a beamline and no time-dependent elements are involved, then
fiducialization is irrelevant. All elements are fiducialized at the central momentum defined in
run_setup.

A number of commands have parameters for controlling fiducialization:

• The always_change_p0 parameter of run_setup causes elegant to re-establish the central
momentum after each element when fiducializing. This may be more convenient than setting
the CHANGE_P0 parameter on the elements themselves. However, it can have unexpected
consequences, such as changing the central momentum to match changes in beam momentum
due to synchrotron radiation.

• run_control has four parameters that affect fiducialization, which come into play when multi-
step runs are made. Typically, these are runs that involve variation of elements, addition of
errors, or loading of multiple sets of parameters.

– reset_rf_for_each_step — If nonzero, the rf phases are re-established for each beam
tracked. If this is 1 (the default), the time reference is discarded after each bunch is
tracked. This means that bunch-to-bunch phasing errors due to time-of-flight differences
would be lost.

– first_is_fiducial — The first bunch seen is taken to establish the fiducial phases
and momentum profile. If one is simulating, for example, successive beams in a fixed
accelerator, this should be set to 1. Otherwise, the momentum reference is discarded after
each bunch is tracked. N.B.: as of version 27.0.1, setting first_is_fiducial=1 does
not imply always_change_p0=1. You must set this separately, or use the CHANGE_P0

parameter on various elements (e.g., RFCA) to further specify how to set the fiducial
momentum profile.

– restrict_fiducialization — If nonzero, then momentum profile fiducialization oc-
curs only after elements that are known to possibily change the momentum. It would
not occur, for example, after a scraper that changes the average beam momentum by
removing a low-momentum tail. This is a convenience that, essentially, allows modifying
the impact of setting always_change_p0=1.

7

– n_passes_fiducial — If positive, sets the number passes used for fiducial tracking to
be different from the n_passes value. For ring fiducialization, should probably always
be set to 1.

• The bunched_beam command has a first_is_fiducial parameter that is convenient for use
with the first_is_fiducial mode established by run_control. If nonzero, this parameter
causes elegant to generate a first bunch with only one particle. This is very useful if one
wants to track with many particles but doesn’t want to waste time fidicializing with a many-
particle bunch.

Here are some examples that may be helpful.

• Scanning a phase error in a linac with a bunch compressor: The scan is performed using
the vary_element command. For this to work properly, it is necessary to fidcualize the
system with zero phase error. Hence, one must use the enumeration feature of vary_element
to provide an input file with the phase errors and the file must be sorted so that the row
with zero phase error is first. Further, one must set reset_rf_for_each_step = 0 and
first_is_fiducial = 1 in run_control, and CHANGE_P0=1 on all rf cavity elements. (See
the bunchComp/phaseSweep and bunchComp/dtSweep examples.)

• Scanning the voltage of a linac to simulate different operating energy choices at the compres-
sor: In this case, one scans the linac voltage, but wants to fiducialize the system for each volt-
age. (It’s a change in design, not an error or perturbation.) One again uses vary_element,
but nothing special needs to be done about the order of the voltage values. One must
set reset_rf_for_each_step = 1 and first_is_fiducial = 0 in in run_control, and
CHANGE_P0=1 on all rf cavity elements. (See the bunchComp/energySweep example.)

• Simulation of phase and voltage jitter: In this case, one uses the error_elements command
to impart errors to the PHASE and VOLT parameters of rf cavity elements. However, the
first beam through the system must not see any errors. This is accomplished by setting
no_errors_for_first_step=1 in error_control. One can also (optionally) use a 1-particle
beam for fiducialization by setting first_is_fiducial=1 in bunched_beam. In addition, one
must set reset_rf_for_each_step = 0 and first_is_fiducial = 1 in run_control, and
CHANGE_P0=1 on all rf cavity elements. (See the bunchCompJitter/jitter example.)

6 Preparing beams for bunch-mode simulations

Certain collective-effects elements in elegant can operate under the assumption that the beam is
organized into bunches. This includes the FRFMODE, FTRFMODE, LRWAKE, RFMODE, WAKE, TRFMODE,
TRWAKE, ZLONGIT, and ZTRANSVERSE elements. At present, this behavior is only available when
loading a beam from an external file using the sdds_beam command. A typical sequence is to run
elegant once to generate a beam file using bunched_beam, then load that beam into a subsequent
run.

This beam file may either contain the entire beam (all the bunches) or it may contain a
single bunch. In the latter case, the single bunch must be duplicated using the n_duplicates

and duplicate_stagger parameters of sdds_beam. Otherwise, in the beam-generation run, the
run_control command must be used to specify both the number of bunches (using n_steps)
and the bunch frequency (using bunch_frequency). The beamline for this run would typically
consist simply of a zero-length drift space, so that the output file from the run_setup command

8

contains the coordinates for each bunch as generated, with no modifications. Once the beam is
generated, it can be used as the input file for sdds_beam with track_pages_separately=0 and
use_bunched_mode=1.

For those who prepare beams using other programs, it may be helpful to understand how the
organization of the beam into bunches is specified. The relevant data from the beam file are the
values in the IDSlotsPerBunch parameter and particleID column. The particleID is generally a
unique positive integer for each particle. When S =IDSlotsPerBunch is non-zero, the bunch index
is computed as ⌊(I−1)/S⌋, where I is the particle ID. For example, with IDSlotsPerBunch=1000,
particle IDs from 1 to 1000 would be in bunch 0, from 2001-3000 would be bunch 1, and so on.
This mechanism allows specifying the bunch structure without adding columns to the beam file,
and also handles particle loss automatically.

Note that although in the case of beams generated with bunched_beam the individual bunches
appear in separate pages of the beam file, this is not necessary.

7 Namelist Command Dictionary

The main input file for an elegant run consists of a series of namelists, which function as commands.
Most of the namelists direct elegant to set up to run in a certain way. A few are “action” commands
that begin the actual simulation. FORTRAN programmers should note that, unlike FORTRAN
namelists, these namelists need not come in a predefined order; elegant is able to detect which
namelist is next in the file and react appropriately.

7.1 Commandline Syntax

The commandline syntax for elegant is of the form

elegant {inputfile|-pipe=in} [-rpnDefns=filename] [-configuration=filename]

[-macro=tag1=value1[,tag2=value2...]

inputfile is the name of the command input file, which is a series of namelist commands directing
the calculations. Alternatively, one may give the -pipe=in option, allowing elegant to be fed a
stream of commands by another program or script. The -rpnDefns option allows providing the
name of the RPN definitions file as an alternative to defining the RPN_DEFNS environment variable.
The -configuration option allows providing the name of an input file to be read prior to inputfile;
this can be used for configuring elegant using, e.g., the global_settings command; this is an
alternative to using the ELEGANT_CONFIGURATION environment variable. The -macro option allows
performing text substitutions in the command stream. Multiple -macro options may be given.
Usage is described in more detail below.

7.2 General Command Syntax

Each namelist has a number of variables associated with it, which are used to control details of the
run. These variables come in three data types: (1) long, for the C long integer type. (2) double,
for the C double-precision floating point type. (3) STRING, for a character string enclosed in double
quotation marks. All variables have default values, which are listed on the following pages. STRING
variables often have a default value listed as NULL, which means no data; this is quite different from
the value “”, which is a zero-length character string. long variables are often used as logical flags,
with a zero value indicating false and a non-zero value indicating true.

9

On the following pages the reader will find individual descriptions of each of the namelist
commands and their variables. Each description contains a sequence of the form

&<namelist-name>

<variable-type> <variable-name> = <default-value>;

.

.

.

&end

This summarizes the parameters of the namelist. Note, however, that the namelists are invoked in
the form

&<namelist-name>

[<variable-name> = <value> ,]

[<array-name>[<index>] = <value> [,<value> ...] ,]

.

.

.

&end

The square-brackets enclose an optional component. Not all namelists require variables to be given–
the defaults may be sufficient. However, if a variable name is given, it must have a value. Values
for STRING variables must be enclosed in double quotation marks. Values for double variables may
be in floating-point, exponential, or integer format (exponential format uses the ‘e’ character to
introduce the exponent).

Array variables take a list of values, with the first value being placed in the slot indicated by
the subscript. As in C, the first slot of the array has subscript 0, not 1. The namelist processor
does not check to ensure that one does not put elements into nonexistent slots beyond the end of
the array; doing so may cause the processor to hang up or crash.

Wildcards are allowed in a number of places in elegant and the SDDS Toolkit. The wildcard
format is very similar to that used in UNIX:

• * — stands for any number of characters, including none.

• ? — stands for any single character.

• [<list-of-characters>] — stands for any single character from the list. The list may
include ranges, such as a-z, which includes all characters between and including ‘a’ and ‘z’
in the ASCII character table.

The special characters *, ?, [, and] are entered literally by preceeding the character by a backslash
(e.g., *).

In many places where a filename is required in an elegant namelist, the user may supply a
so-called “incomplete” filename. An incomplete filename has the sequence “%s” imbedded in it, for
which is substituted the “rootname.” The rootname is by default the filename (less the extension)
of the command (i.e., main input) file. The most common use of this feature is to cause elegant

to create names for all output files that share a common filename but differ in their extensions.
Post-processing can be greatly simplified by adopting this naming convention, particularly if one
consistently uses the same extension for the same type of output. Recommended filename extensions
are given in the lists below.

10

Note that this substitution feature is not generally available for input files, though there are
some exceptions (e.g., load_parameters). Another convenience for input file organization is the
search-path feature, which can be set from the run_setup command. By default, elegant assumes
input filenames give the full pathname. If the search path is specified, elegant will instead look
for files in one of the listed directories.

When elegant reads a namelist command, one of its first actions is to print the namelist back
to the standard output. This printout includes all the variables in the namelist and their values.
Occasionally, the user may see a variable listed in the printout that is not in this manual. These are
often obsolete and are retained only for backward compatibility, or else associated with a feature
that is not fully supported. Use of such “undocumented features” is discouraged.

elegant supports substitution of fields in namelists using the commandline macro option. This
permits making runs with altered parameters without editing the input file. Macros inside the
input file have one of two forms: <tag> or \$tag. To perform substitution, use the syntax

elegant inputfile|-pipe=in -macro=tag1=value1[,tag2=value2...]

When using this feature, it is important to substitute the value of rootname (in run setup) so that
one can get a new set of output files (assuming use of the suggested “%s” field in all the output
file names). One may give the macro option any number of times, or combine all substitutions in
one option. The name of the input file is available using the macro INPUTFILENAME.

elegant also allows execution of commands in the shell as part of evaluation of a namelist field.
To invoke this, one encloses the commandline string in curly braces. E.g.,

betax = "{sdds2stream -parameter=betaxFinal data.twi}"

(Note that the quotes are also required.) In this example, betax is assigned the value of the
parameter betaxFinal from the file data.twi.

It is also possible to perform calculations using elegant’s built-in RPN calculator. (It is iden-
tical to the commandline programs rpn and rpnl supplied with the SDDS toolkit.) To do this in
the command file, one must use quotation marks and enclose the expression in parentheses, as in

betax = "(8 2 / pi /)"

(Note that this is different from using such expressions in the lattice file; in that case, one doesn’t
need the parentheses.) One can not only make such computations, but also use the stack and
variables. So, for example, one might use

betax = "(8 2 / pi / sto betax0)"

betay = "(betax0)"

One can also mix subcommands and RPN expressions, as in

betax = "({sdds2stream -parameter=betaxFinal data.twi} 2 /)"

would assign to betax half the value of the parameter betaxFinal from the file data.twi.

7.3 Setup and Action Commands

A subject of frequent confusion for elegant users is the distinction between setup and action com-
mands. An “action” command causes elegant to immediately perform a specific computation or
set of computations. In contrast, a “setup” command tells elegant how to perform computa-
tions when it later encounters a “major” action command (one of analyze_map, find_aperture,

11

frequency_map, momentum_aperture, optimize, or track). (N.B.: After each major action com-
mand, the problem space is wiped clear. To peform further computations requires introduction of
a new run_setup command.)

Several commands are switchable between action and setup modes. These include the coupled_
twiss_output, correction_matrix_output, twiss_output, find_aperture, matrix_output, and
sasefel commands. Except for find_aperture, all of the commands that can run in both modes
have the output_at_each_step parameter, which is used to switch between the modes. In the
case of find_aperture, the switch is accomplished using the optimization_mode parameter. Re-
gardless of which parameter is present, unless the parameter is given a value of 1, the command
operates in action mode. Further, if the command is used in setup mode and no relevant action
command is present later in the file, then the requested will not be performed.

Typically one wants to use these switchable commands in setup mode whenever one is simulating
random errors, performing a parameter scan, or performing optimization. When in setup mode,
the indicated computations will be performed repeatedly, e.g., for each set of errors, for each step
in the parameter scan, or for use in each evaluation of the optimization penalty function.

12

7.4 Table of elegant commands and their functions

Command name Type Description

alter elements action Change an element parameter from the
command file.

amplification factors action Compute orbit amplification functions.

analyze map major
action

Determine first-order matrix from track-
ing.

aperture data setup Define aperture using an SDDS file.

bunched beam setup Set up beam generation.

change particle action Change the type of particle. Default is
electron.

chaos map action Compute a map of the degree of chaos in
particle motion.

chromaticity setup Correct the chromaticity.

closed orbit setup Compute the closed orbit.

correct setup Correct the orbit or trajectory.

correction matrix output action/setup Obtain orbit/trajectory correction matrix
in a file.

correct tunes setup Correct the tunes.

coupled twiss output setup/action Compute and output coupled twiss pa-
rameters.

divide elements setup Specify division of elements into pieces.

elastic scattering major
action

Use tracking to determine local scattering
aperture and loss locations due to elastic
gas scattering.

error element setup Define errors for a set of elements.

error control setup Set up and control error generation pro-
cess.

find aperture setup/major
action

Determine the transverse (e.g., dynamic)
aperture.

floor coordinates action Compute and output floor coordinates.

frequency map major
action

Compute and output frequency map.

global settings action Change global settings.

ignore elements setup Ignore specified elements during tracking.

inelastic scattering major
action

Use tracking to determine local scattering
aperture and loss locations due to inelastic
gas scattering.

insert elements action Insert elements into the lattice at many
places.

insert sceffects action Insert space charge kick elements.

linear chromatic tracking setup setup Set up for fast tracking with chromatic ef-
fects.

link control setup Control linking of element parameters.

13

link elements setup Define link between parameters of two el-
ements.

load parameters setup/action Load element parameters from SDDS file.

matrix output setup/action Output transfer matrix along beamline.

modulate elements setup Set up time-dependent modulation of ele-
ments.

moments output setup/action Compute coupled beam moments, with
radiation option.

momentum aperture major
action

Determine s-dependent momentum aper-
ture.

optimize major
action

Execute an optimization.

optimization covariable setup Define a dependent parameter for opti-
mization.

optimization setup setup Perform initial optimization setup.

optimization term setup Define a term of penalty function.

optimization variable setup Define an optimization variable.

parallel optimization setup setup Perform initial parallel optimization
setup.

print dictionary action Print the element dictionary.

ramp elements setup Set up turn-by-turn ramping of elements.

rf setup setup/action Set up RF cavity elements for storage
rings.

rpn expression action Execute an expression in the rpn inter-
preter.

rpn load action Load values from SDDS file into rpn in-
terpreter.

run control setup Set up simulation steps and passes.

run setup setup Define global simulation parameters and
output files.

sasefel setup/action Evaluate SASE FEL gain etc.

save lattice action Save new lattice file.

sdds beam setup Define loading of particles from SDDS file.

semaphores setup Define file semaphores for start/end of
run.

set reference particle output setup Define reference particle distribution for
optimization

slice analysis setup Perform slice analysis along beamline.

subprocess action Execute a command in the shell.

steering element setup Define element parameters as steering cor-
rectors.

transmute elements setup Transmute elements from one type to an-
other.

tune footprint setup/action Compute and optimize chromatic and am-
plitude tune footprints.

14

twiss analysis setup Define subset of beamline for twiss param-
eter analysis.

twiss output setup/action Set up twiss parameter and related com-
putation.

track major
action

Execute tracking of particles and other op-
erations.

tune shift with amplitude setup Compute tune shifts with amplitude.

vary element setup Vary element parameters in loops.

Table 1: Table of elegant commands and their functions.

15

alter_elements

7.5 alter elements

• type: action command.

• function: modify the value of a parameter for one or more elements

• sequence: must follow run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&alter_elements

STRING name = NULL;

STRING item = NULL;

STRING type = NULL;

STRING exclude = NULL;

double value = 0;

STRING string_value = NULL;

long differential = 0;

long multiplicative = 0;

long alter_at_each_step = 0;

long alter_before_load_parameters = 0;

long verbose = 0;

long allow_missing_elements = 0;

long allow_missing_parameters = 0;

long start_occurence = 0;

long end_occurence = 0;

double s_start = -1;

double s_end = -1;

STRING before = NULL;

STRING after = NULL;

&end

• name — A possibly-wildcard-containing string giving the names of the elements to alter. If
not specified, then one must specify type.

• item — The name of the parameter to alter.

• type — A possibly-wildcard-containing string giving the names of element types to alter.
May be specified with name or by itself.

• exclude — A possibly-wildcard-containing string giving the names of elements to excluded
from alteration.

• value, string_value — The new value for the parameter. Use string_value only if the
parameter takes a character string as its value.

• differential — If nonzero, the new value is the predefined value of the parameter plus the
quantity given with value.

16

• multiplicative— If nonozero, the new given value is the predefined value of the parameter
times the quantity given with value.

• alter_at_each_step — If nonzero, the changes requested by the command are performed
at each simulation step. Note that if differential or multiplicative are non-zero, then
changes will accumulate. (A more conventional way to perform such variation is with vary_elements.)

• alter_before_load_parameters— If alter_at_each_step, by default the alteration takes
place after any load_parameters commands are processed. If this control is non-zero, the
alteration takes place before any load_parameters commands are processed.

• verbose— If nonzero, information is printed to the standard output describing what elements
are changed.

• allow_missing_elements— If nonzero, then it is not an error if an element matching name

does not exist. Normally, such an occurence is an error and terminates the program.

• allow_missing_parameters— If nonzero, then it is not an error if an element does not have
the parameter named with item. Normally, such an occurence is an error and terminates the
program.

• start_occurence, end_occurence— If nonzero, these give the starting and ending occurence
numbers of elements that will be altered. N.B.: if wildcards are used, occurence number
counting is for each set of identically-named elements separately, rather than for the sequence
of matched elements.

• s_start, s_end — If non-negative, these give the gaving and ending position limits for the
end-of-element locations of elements to be altered.

• after — The name of an element. If given, the alteration is applied only to elements that
follow the named element in the beamline.

• before — The name of an element. If given, the alteration is applied only to elements that
precede the named element in the beamline.

17

amplification_factors

7.6 amplification factors

• type: action command.

• function: compute corrected and uncorrected orbit amplification factors and functions.

• sequence: must be the last command in a sequence.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&lification_factors

STRING output = NULL;

STRING uncorrected_orbit_function = NULL;

STRING corrected_orbit_function = NULL;

STRING kick_function = NULL;

STRING name = NULL;

STRING type = NULL;

STRING item = NULL;

STRING plane = NULL;

double change = 1e-3;

long number_to_do = -1;

double maximum_z = 0;

&end

• output — The (incomplete) name of a file for text output. Recommended value: “%s.af”.

• uncorrected_orbit_function—The (incomplete) name of a file for an SDDS-format output
of the uncorrected-orbit amplification function. Recommended value: “%s.uof”.

• corrected_orbit_function— The (incomplete) name of a file for an SDDS-format output
of the corrected-orbit amplification function. Recommended value: “%s.cof”.

• kick_function — The (incomplete) name of a file for an SDDS-format output of the kick
amplification function. Recommended value: “%s.kaf”.

• name — The optionally wildcarded name of the orbit-perturbing elements.

• type — The optional type name of the the orbit-perturbing elements.

• item — The parameter of the elements producing the orbit.

• plane — The plane (“h” or “v”) to examine.

• change — The parameter change to use in computing the amplification.

• number_to_do — The number of elements to perturb.

• maximum_z — The maximum z coordinate of the elements to perturb.

18

analyze_map

7.7 analyze map

• type: major action command.

• function: find the transport matrix up to third order based on particle tracking, based on
method described in [4]. Also find related quantities, such as chromaticity.

• sequence: must follow run_control.

• can use parallel resources (Pelegant)

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&analyze_map

STRING output = NULL;

long output_order = 1;

STRING printout = NULL;

STRING printout_format = "%22.15e ";

long printout_order = 2;

double delta_x = 5e-5;

double delta_xp = 5e-5;

double delta_y = 5e-5;

double delta_yp = 5e-5;

double delta_s = 5e-5;

double delta_dp = 5e-5;

double accuracy_factor = 1e-12;

long center_on_orbit = 0;

long verbosity = 0;

long canonical_variables = 0;

long periodic = 1;

double beta_x = 1;

double alpha_x = 0;

double eta_x = 0;

double etap_x = 0;

double beta_y = 1;

double alpha_y = 0;

double eta_y = 0;

double etap_y = 0;

long n_points = 9;

long max_fit_order = 8;

&end

• output — The (incomplete) name of a file for SDDS output.

– Recommended value: “%s.ana”.

– File contents: A series of pages, each consisting of a single data point containing the
centroid offsets for a single turn, the single-turn R matrix, the matched Twiss parameters,
tunes, and dispersion functions.

19

• printout — The (incomplete) name of a file for text output of the matrix.

• printout_format — The C-style formatting statement for the matrix elements. A space,
comma, or other separator should appear at the end of the string.

• delta_X— The amount by which to change the quantity X in computing the derivatives that
give the matrix elements.

• accuracy_factor— The fraction of the maximum absolute value of the final coordinate that
is considered meaningful. Used to estimate errors and eliminate spurious matrix elements.

• canonical_variables— If non-zero, the matrix is expressed in terms of canonical variables
(x, qx, y, qy,−s, δ) instead of the default (x, x′, y, y′, s, δ).

• center_on_orbit— A flag directing the expansion to be made about the closed orbit instead
of the design orbit.

• verbosity — The larger this value, the more output is printed during computations.

• printout_order — Order of the matrix to be printed to the printout file.

• periodic — If non-zero, system is assumed to be periodic and lattice functions, tunes,
chromaticities, etc are computed.

• beta_x, alpha_x, eta_x, etap_x, beta_y, alpha_y, eta_y, etap_y — If periodic=0, these
are the starting values for the lattice functions.

• n_points — Number of points in each phase-space dimension.

• max_fit_order — Maximum order of fits using in determining the matrix elements.

20

aperture_data

7.8 aperture data

• type: setup command.

• function: specify a file from which to take x and y aperture data vs s.

• note: this command is also available under the name aperture_input.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&aperture_data

STRING input = NULL;

long periodic = 1;

long persistent = 0;

long disable = 0;

&end

• input — Name of SDDS file supplying the aperture data. The following columns are all
required, in double or float type, with units of m (meters).

1. s — Distance along the central trajectory.

2. xHalfAperture — Half aperture in the horizontal.

3. yHalfAperture — Half aperture in the vertical.

4. xCenter — Center of the aperture in the horizontal.

5. yCenter — Center of the aperture in the vertical.

• periodic — If non-zero, the aperture is a periodic function of s, with period equal to the
range of the data.

• persistent — If non-zero, the aperture data persists across subsequent run_setup com-
mands. By default, the aperture data is forgotten when a new run_setup command is seen.

• disable — If non-zero, the command is ignored.

21

bunched_beam

7.9 bunched beam

• type: setup command.

• sequence: must follow run_control.

• function: set up for tracking of particle coordinates with various distributions.

• In Pelegant, the exact particles generated will change as the number of cores is changed.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&bunched_beam

STRING bunch = NULL;

long n_particles_per_bunch = 1;

double time_start = 0;

STRING matched_to_cell = NULL;

double emit_x = 0;

double emit_nx = 0;

double beta_x = 1.0;

double alpha_x = 0.0;

double eta_x = 0.0;

double etap_x = 0.0;

double emit_y = 0;

double emit_ny = 0;

double beta_y = 1.0;

double alpha_y = 0.0;

double eta_y = 0.0;

double etap_y = 0.0;

long use_twiss_command_values = 0;

long use_moments_output_values = 0;

double Po = 0.0;

double sigma_dp = 0.0;

double sigma_s = 0.0;

double dp_s_coupling = 0;

double emit_z = 0;

double beta_z = 0;

double alpha_z = 0;

double momentum_chirp = 0;

long one_random_bunch = 1;

long symmetrize = 0;

long halton_sequence[3] = {0, 0, 0};

long halton_radix[6] = {0, 0, 0, 0, 0, 0};

long optimized_halton = 0;

long randomize_order[3] = {0, 0, 0};

long limit_invariants = 0;

long limit_in_4d = 0;

long enforce_rms_values[3] = {0, 0, 0};

22

double distribution_cutoff[3] = {2, 2, 2};

STRING distribution_type[3] = {"gaussian","gaussian","gaussian"};

double centroid[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

long first_is_fiducial = 0;

long save_initial_coordinates = 1;

&end

• bunch — The (incomplete) name of an SDDS file to which the phase-space coordinates of the
bunches are to be written. Recommended value: “%s.bun”.

• n_particles_per_bunch — Number of particles in each bunch.

• time_start — The central value of the time coordinate for the bunch.

• matched_to_cell— The name of a beamline from which the Twiss parameters of the bunch
are to be computed.

• emit_X — RMS emittance for the X plane.

• emit_nX — RMS normalized emittance for the X plane. Ignored if emit_X is nonzero.

• beta_X, alpha_X, eta_X, etap_X — Twiss parameters for the X plane.

• use_twiss_command_values— If nonzero, then the values for β, α, η, and η′ are taken from
the twiss_output command. It is an error if no twiss_output command has been given.

• use_moments_output_values — If nonzero, then the beam is generated to match the 6D
matched, equilibrium beam moments computed by the moments_output command. The dis-
tribution type must be gaussian. This mode is incompatible with using closed orbit correction
with start_from_centroid=1 (the default value).

• Po — Central momentum of the bunch.

• sigma_dp, sigma_s — Fractional momentum spread, ffi, and bunch length. Note that
sigma_s is actually the length in βz ∗ c ∗ t, so that for βz << 1 the length of the bunch
in time will be greater than one might expect.

• dp_s_coupling — Specifies the coupling between s and ffi, defined as 〈sffi〉/(œsœffi).

• emit_z, beta_z, alpha_z — Provide another way to specify the longitudinal phase space,
either separately from or in combination with sigma_dp, sigma_s, and dp_s_coupling.

Basically, which values elegant uses depends on what one sets to nonzero values. If one sets
emit z, then sigma dp, sigma s, and dp s coupling are ignored. If one doesn’t set emit z, then
elegant uses sigma dp and sigma s; it additionally uses alpha z if it is nonzero, otherwise it
uses dp s coupling. For reference, the relationship between them is C = Σ56√

Σ55Σ66

= − α√
1+α2

.

Note that to impart a chirp that results in compression for R56 < 0 (e.g., a normal four-dipole
chicane), one must have αz < 0 or C > 0.

• momentum_chirp — Permits imparting an additional momentum chirp to the beam, in units
of 1/m. E.g., a value of 1 indicates that a 1mm long bunch has a linear variation in momentum
of 0.1% from end-to-end. A positive chirp is needed to provide compression of a bunch with
an ordinary R56 < 0 four-dipole chicane.

23

• one_random_bunch — If non-zero, then only one random particle distribution is generated.
Otherwise, a new distribution will be generated for every simulation step.

• enforce_rms_values[3]— Flags, one for each plane, indicating whether to force the distri-
bution to have the specified RMS properties.

• distribution_cutoff[3] — Distribution cutoff parameters for each plane. For gaussian
distributions, this is the number of sigmas to use. For other distributions (except dynamic
aperture), this number simply multiplies the sizes. This is potentially confusing and hence it
is suggested that the distribution cutoff be set to 1 for nongaussian beams.

The exception is “dynamic-aperture” distribution type. In this case, the cutoff value is the
number of grid points in the dimension in question.

• distribution_type[3]—Distribution type for each plane. May be “gaussian”, “hard-edge”,
“uniform-ellipse”, “shell”, “dynamic-aperture”, “line”, “halo(gaussian)”.

For the transverse plane, the interpretation of the emittance is different for the different beam
types. For gaussian beams, the emittances are rms values. For all other types,

√
ǫ ∗ β times

the distribution cutoff defines the edge of the beam in position space, while
√

ǫ ∗ (1 + α2)/β
times the distribution cutoff defines the edge of the beam in slope space.

A hard-edge beam is a uniformly-filled parallelogram in phase space. A uniform-ellipse beam
is a uniformly-filled ellipse in phase space. A shell beam is a hollow ellipse in phase space. A
dynamic aperture beam has zero slope and uniform spacing in position coordinates. A line
beam is a line in phase space. A “halo(gaussian)” beam is the part of the gaussian distribution
beyond the distribution cutoff.

• limit_invariants— If non-zero, the distribution cutoffs are applied to the invariants, rather
than to the coordinates. This is useful for gaussian beams when the distribution cutoff is small.

• limit_in_4d — If non-zero, then the transverse distribution is taken to be a 4-d gaussian or
uniform distribution. One of these must be chosen using the distribution_type control. It
must be the same for x and y. This is useful, for example, if you want to make a cylindrically
symmetric beam.

• symmetrize — If non-zero, the distribution is symmetric under changes of sign in the coor-
dinates. Automatically results in a zero centroid for all coordinates.

• halton_sequence[3] and halton_radix[6] and optimized_halton—This provides a “quiet-
start” feature by choosing Halton sequences in place of random number generation. There
are three new variables that control this feature. halton_sequence is an array of three flags
that permit turning on Halton sequence generation for the horizontal, vertical, or longitudinal
planes. For example, halton_sequence[0] = 3*1 will turn on Halton sequences for all three
planes, while halton_sequence[2] = 1, will turn it on for the longitudinal plane only.

halton_radix is an array of six integers that permit giving the radix for each sequence (i.e.,
x, x’, y, y’, t, p). Each radix must be a prime number. One should never use the same prime
for two sequences, unless one randomizes the order of the sequences relative to each other (see
the next item). If these are left at zero, then elegant chooses values that eliminate phase-space
banding to some extent. The user is cautioned to plot all coordinate combinations for the
initial phase space to ensure that no unacceptable banding is present.

24

A suggested way to use Halton sequences is to set halton_radix[0] = 2, 3, 2, 3, 2, 3

and to set randomize_order[0] = 2, 2, 2,. This avoids banding that may result from
choosing larger radix values.

optimized_halton uses the improved halton sequence [33]. (Algorithm 659, Collected Algo-
rithm from ACM. Derandom Algorithm is added by Hongmei CHI (CS/FSU)). It avoids the
banding problem automatically and the halton_radix values are ignored.

• randomize_order[3] — Allows randomizing the order of assigned coordinates for the pairs
(x, x’), (y, y’), and (t,p). 0 means no randomization; 1 means randomize (x, x’, y, y’, t, p)
values independently, which destroys any x-x’, y-y’, and t-p correlations; 2 means randomize
(x, x’), (y, y’), and (t, p) in pair-wise fashion. This is used with Halton sequences to remove
banding. It is suggested that that the user employ sddsanalyzebeam to verify that the beam
properties when randomization is used.

• centroid[6] — Centroid offsets for each of the six coordinates.

• first_is_fiducial— Specifies that the first beam generated shall be a single particle beam,
which is suitable for fiducialization. See the section on “Fiducialization in elegant” for more
discussion.

• save_initial_coordinates — A flag that, if set, results in saving initial coordinates of
tracked particles in memory. This is the default behavior. If unset, the initial coordinates
are not saved, but are regenerated each time they are needed. This is more memory efficient
and is useful for tracking very large numbers of particles.

25

change_particle

7.10 change particle

• type: action command.

• function: change the particle type from the default value of “electron.”

• sequence: must precede run_setup.

• N.B.: this feature has had limited testing, mostly to verify that electron tracking is not
impacted by the implementation. Please use with caution and be alert for suspicious results.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&change_particle

STRING name = "electron";

double mass_ratio = 0;

double charge_ratio = 0;

&end

• name — The name of the particle to use. Possible values are electron, positron, proton,
muon, and custom.

• mass_ratio, charge_ratio— If the particle name is “custom,” these parameters specify the
mass and charge of the particle relative to the electron. E.g., for an anti-proton, one would
use a mass ratio of 1836.18 and a charge ratio of 1.

26

chaos_map

7.11 chaos map

• type: major action command.

• function: compute chaos map from tracking. Note that the number of turns tracked is set by
the run_control command.

• can use parallel resources (Pelegant)

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• NB: this feature is new in 2019.4 and somewhat experimental. Please report problems on the
forum.

&chaos_map

STRING output = NULL;

double xmin = -0.1;

double xmax = 0.1;

double ymin = 1e-6;

double ymax = 0.1;

double delta_min = 0;

double delta_max = 0;

long nx = 20;

long ny = 21;

long ndelta = 1;

long forward_backward = 0;

double change_x = 1e-6;

double change_y = 1e-6;

long verbosity = 1;

&end

• output — The (incomplete) name of an SDDS file to send output to. Recommended value:
“%s.cmap”. For the parallel version, particles will be listed in essentially random order. If
needed, sddssort can be used to sort particles by initial coordinates.

• xmin, xmax — Limits of grid of initial x coordinates for tracking.

• ymin, ymax — Limits of grid of initial y coordinates for tracking. ymin should be a small,
positive value so that there is some betatron oscillation from which to get the tune.

• delta_min, delta_max — Limits of grid of initial δ coordinates for tracking. Note that par-
ticles are not centered around the dispersive closed orbit. Hence, the tracking is appropriate
to simulation of dynamics from a touschek scattering event.

• nx — Number of values of x coordinate in the grid.

• ny — Number of values of y coordinate in the grid.

• ndelta — Number of values of δ coordinate in the grid.

27

• forward_backward — If non-zero, uses the forward/backward integration technique of Y.
Li et al. [56]. The number of passes tracked is still controlled by the n_passes parameter
of run_control. In addition, the number of iterations of forward and backward tracking is
given by the value of forward_backward. If zero, a less interesting technique is used that
computes the change in Jx and Jy from tracking with small changes in initial conditions.

• change_x, change_y — If forward_backward is zero, gives the perturbation to initial x and
y used to assess chaotic motion from divergence of trajectories.

• verbosity — If nonzero, prints possibly useful information while running.

28

chromaticity

7.12 chromaticity

• type: setup command.

• function: set up for chromaticity correction.

• sequence: should follow twiss_output.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&chromaticity

STRING sextupoles = NULL;

STRING exclude = NULL;

double dnux_dp = 0;

double dnuy_dp = 0;

double sextupole_tweek = 1e-3;

double correction_fraction = 0.9;

long n_iterations = 5;

double tolerance = 0;

STRING strength_log = NULL;

long change_defined_values = 0;

double strength_limit = 0;

long use_perturbed_matrix = 0;

long exit_on_failure = 0;

long update_orbit = 0;

long verbosity = 1;

double dK2_weight = 1;

&end

• sextupoles — List of names of elements to use to correct the chromaticities. Several names
may be given and names may include wildcards. If so, then sextupoles in each group are
changed by the same amount for each iteration. This would typically be used when the
sextupoles are nominally identical (though perhaps differing in strength because of introduced
errors). If that’s not the case, the iteration may fail to converge.

• exclude—List of names of elements to exclude. This may be used to exclude some sextupoles
that are matched by wildcards in the sextupole list.

• dK2_weight — Weighting factor that is used to minimize the mean-square changes in K2

values in the event that there are more than two families.

• dnux_dp, dnuy_dp — Desired chromaticity values.

• sextupole_tweek — Amount by which to tweak the sextupoles to compute derivatives of
chromaticities with respect to sextupole strength. [The word “tweak” is misspelled “tweek”
in the code.]

• correction_fraction— Fraction of the correction to apply at each iteration. In some cases,
correction is unstable at this number should be reduced.

29

• n_iterations — Number of iterations of the correction to perform.

• tolerance — Stop iterating when chromaticities are within this value of the desired values.

• strength_log — The (incomplete) name of an SDDS file to which the sextupole strengths
will be written. Recommended value: “%s.ssl”.

• change_defined_values — Changes the defined values of the sextupole strengths. This
means that when the lattice is saved (using save_lattice), the sextupoles will have the
corrected values. This would be used for correcting the chromaticity of a design lattice, for
example, but not for correcting chromaticity of a perturbed lattice.

• strength_limit — Limit on the absolute value of sextupole strength (K2).

• use_perturbed_matrix — If nonzero, requests use of the perturbed correction matrix in
performing correction. For difficult lattices with large errors, this may be necessary to obtain
correction. In general, it is not necessary and only slows the simulation.

• exit_on_failure — If nonzero, then failure to reach the desired chromaticities within the
tolerance results in the program exiting.

• update_orbit — If non-zero, the orbit calculation is updated after each nth adjustment of
the sextupoles.

• verbosity — Increasing positive values result in increasing amounts of information printed
during execution.

30

closed_orbit

7.13 closed orbit

• type: setup command.

• function: set up for computation of the closed orbit.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&closed_orbit

STRING output = NULL;

long output_monitors_only = 0;

long start_from_centroid = 1;

long start_from_dp_centroid = 0;

double closed_orbit_accuracy = 1e-12;

long closed_orbit_iterations = 40;

long fixed_length = 0;

long start_from_recirc = 0;

long verbosity = 0;

double iteration_fraction = 0.9;

double fraction_multiplier = 1.05;

double multiplier_interval = 5;

long output_monitors_only = 0;

long tracking_turns = 0;

long disable = 0;

&end

• output — The (incomplete) name of an SDDS file to which the closed orbits will be written.
Recommended value: “%s.clo”.

• output_monitors_only — If non-zero, indicates that the closed orbit output should include
only the data at the locations of the beam-position monitors.

• start_from_centroid — A flag indicating whether to force the computation to start from
the centroids of the beam distribution.

• start_from_dp_centroid — A flag indicating whether to force the computation to use
the momentum centroid of the beam for the closed orbit. This can allow computing the
closed orbit for an off-momentum beam, then starting the beam on that orbit using the
offset_by_orbit or center_on_orbit parameters of the track command. In contrast to
the start_from_centroid, this command doesn’t force the algorithm to start from the beam
transverse centroids.

• closed_orbit_accuracy—The desired accuracy of the closed orbit, in terms of the difference
between the start and end coordinates, in meters.

• closed_orbit_iterations — The number of iterations to take in finding the closed orbit.

• iteration_fraction— Fraction of computed change that is used each iteration. For lattices
that are very nonlinear or close to unstable, a number less than 1 can be helpful. Otherwise,
it only slows the simulation.

31

• fixed_length— A flag indicating whether to find a closed orbit with the same length as the
design orbit by changing the momentum offset.

• start_from_recirc — A flag indicating whether to compute the closed orbit from the re-
circulation (recirc) element in the beamline. In general, if one has a recirculation element,
one should give this flag.

• verbosity — A larger value results in more printouts during the computations.

• iteration_fraction — Controls the fraction of the update to apply when iterating toward
a closed orbit. Smaller numbers give less chance of instability at the price of slower conver-
gence.e

• fraction_multiplier — Multiplier to apply to the iteration fraction if iteration is converg-
ing.

• multiplier_interval — Interval in number of iterations at which to adjust the interation
fraction.

• output_monitors_only— If non-zero, output file contains data only at beam position mon-
itors, i.e., at MONI, HMON, and VMON elements.

• tracking_turns — If non-zero, the number of turns to track for detemination of the closed
orbit by averaging. This may be useful if the regular closed orbit algorithm complains about
convergence issues.

• disable — If non-zero, disables the command.

32

correct

7.14 correct

• type: setup command.

• sequence: must follow run_setup and precede beam definition (bunched_beam or sdds_beam).

• function: set up for correction of the trajectory or closed orbit.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&correct

STRING mode = "trajectory";

STRING method = "global";

STRING trajectory_output = NULL;

STRING corrector_output = NULL;

STRING statistics = NULL;

STRING bpm_output = NULL;

double corrector_tweek[2] = {1e-3, 1e-3};

double corrector_limit[2] = {0, 0};

double correction_fraction[2] = {1, 1};

double correction_accuracy[2] = {1e-6, 1e-6};

long do_correction[2] = {1, 1};

long remove_smallest_SVs[2] = {0, 0};

long keep_largest_SVs[2] = {0, 0};

double minimum_SV_ratio[2] = {0, 0};

long auto_limit_SVs[2] = {1, 1};

long removed_pegged[2] = {0, 0};

long threading_divisor[2] = {100, 100};

long threading_correctors[2] = {-1, -1};

double bpm_noise[2] = {0, 0};

double bpm_noise_cutoff[2] = {1.0, 1.0};

STRING bpm_noise_distribution[2] = {"uniform", "uniform"};

long verbose = 1;

long fixed_length = 0;

long fixed_length_matrix = 0;

long n_xy_cycles = 1;

long minimum_cycles = 1;

long force_alternation = 0;

long n_iterations = 1;

long prezero_correctors = 1;

long track_before_and_after = 0;

long start_from_centroid = 1;

long use_actual_beam = 0;

double closed_orbit_accuracy = 1e-12;

long closed_orbit_iterations = 10;

double closed_orbit_iteration_fraction = 1;

double closed_orbit_tracking_turns = 0;

33

long use_perturbed_matrix = 0;

long disable = 0;

long use_response_from_computed_orbits = 0;

&end

In the case of array variables with dimension 2, the first entry is for the horizontal plane and
the second is for the vertical plane.

• mode — Either “trajectory” or “orbit”, indicating correction of a trajectory or a closed orbit.

• method — For trajectories, may be “one-to-one”, “one-to-best”, “one-to-next”, “thread”, or
“global”. “One-to-one” and “one-to-next” are the same: steering is performed by pairing one
corrector with the next downstream BPM. “One-to-best” attempts to find a BPM with a
large response to each corrector. “Thread” does corrector sweeps to work the beam through
a beamline with apertures; it is quite slow. “Global” simply uses the global response matrix;
it is the best choice if the trajectory is not lost on an aperture. For closed orbit, must be
“global”.

• trajectory_output — The (incomplete) name of an SDDS file to which the trajectories or
orbits will be written. Recommended value: “%s.traj” or “%s.orb”.

• corrector_output—The (incomplete) name of an SDDS file to which information about the
final corrector strengths will be written. Recommended value: “%s.cor”. N.B.: although this
file looks as if it can be used with the load_parameters command, care must be exercised
because the data for the horizontal and vertical planes is on separate pages. Typically,
one will need to use sddscombine -merge=Step ... in order to place the data from both
planes on the same page. Also, be aware that if all correctors have the same name, using
change_defined_values=1 on load_parameters will not produce the expected results. See
the documentation for load_parameters for more details.

• statistics— The (incomplete) name of an SDDS file to which statistical information about
the trajectories (or orbits) and corrector strengths will be written. Recommended value:
“%s.scor”.

• bpm_output — The (incomplete) name of an SDDS file to which post-correction BPM er-
rors will be written. The errors are the residual after correction, and include the effects
of offsets (DX and DY), setpoints (XSETPOINT, YSETPOINT, and SETPOINT), and tilts (TILT).
Recommended value: “%s.bpm”.

• corrector_tweek[2] — The amount by which to change the correctors in order to compute
correction coefficients for transport lines. [The word “tweak” is misspelled “tweek” in the
code.] The default value, 1 mrad, may be too large for systems with small apertures. If you
get an error message about “tracking failed for test particle,” try decreasing this value.

• corrector_limit[2] — The maximum strength allowed for a corrector.

• correction_fraction[2] — The fraction of the computed correction strength to actually
use for any one iteration.

• correction_accuracy[2] — The desired accuracy of the correction in terms of the RMS
BPM values.

34

• do_correction[2] — Flags to allow disabling correction in one or both planes (if set to
zero).

• remove_smallest_SVs, keep_largest_SVs, minimum_SV_ratio, auto_limit_SVs — These
parameters control the elimination of singular vectors from the inverse response matrix, which
can help deal with degeneracy in the correctors and reduce corrector strength. By default,
the number of singular vectors is limited to the number of BPMs, which is a basic condition
for stability; this can be defeated by setting auto_limit_SVs to 0 for the desired planes.
Set remove_smallest_SVs to require removal of a given number of vectors with the smallest
singular values; this is ignored if auto_limit_SVs is also requested and would remove more
SVs. Set keep_largest_SVs to require keeping at most a given number of the largest SVs.
Set minimum_SV_ratio to require removal of any vectors with singular values less than a
given factor of the largest singular value.

• remove_pegged[2] — If nonzero, then for the plane in question pegged correctors will be
removed from the correction matrix. This results in recomputation of the matrix, following
which correction continues with the reduced set of correctors. The pegged corrector is left at
its last value.

• threading_divisor — In threading mode trajectory correction, each corrector is varied
between 0 and ±θmax, where θmax is the strength limit. This parameter sets the number of
steps to divide the corrector range into on the positive and negative sides. A smaller value
results in faster execution but is less reliable.

• threading_correctors — In threading mode trajectory correction, gives the number of
correctors upstream of the loss point to use for threading the beam further through the
system.

• bpm_noise[2] — The BPM noise level.

• bpm_noise_cutoff[2] — Cutoff values for the random distributions of BPM noise.

• bpm_noise_distribution[2] — May be either “gaussian”, “uniform”, or “plus or minus”.

• verbose — If non-zero, information about the correction is printed during computations.

• fixed_length— Indicates that the closed orbit length should be kept the same as the design
orbit length by changing the momentum offset of the beam.

• fixed_length_matrix — Indicates that for fixed-length orbit correction, the fixed-length
matrix should be computed and used. This will improve convergence but isn’t always needed.

• n_xy_cycles — Number of times to alternate between correcting the x and y planes.

• force_alternation — Forces alternation between x and y correction even if one plane ap-
pears to have converged.

• minimum_cycles — The minimum number of x-y cycles to perform, even if the correction
does not improve.

• n_iterations — Number of iterations of the correction in each plane for each x/y cycle.

• prezero_correctors— Flag indicating whether to set the correctors to zero before starting.

35

• track_before_and_after — Flag indicating whether tracking should be done both before
and after correction.

• start_from_centroid—Flag indicating that correction should start from the beam centroid.
For orbit correction, only the beam momentum centroid is relevant.

• use_actual_beam — Flag indicating that correction should employ tracking of the beam
distribution rather than a single particle. This is valid for trajectory correction only.

• closed_orbit_accuracy — Accuracy of closed orbit computation.

• closed_orbit_iterations — Number of iterations of closed orbit computation.

• closed_orbit_iteration_fraction — Fraction of change in closed orbit to use at each
iteration.

• closed_orbit_tracking_turns— If non-zero, the absolute value gives the number of turns
to track for detemination of the closed orbit by averaging. This may be useful if the regular
closed orbit algorithm complains about convergence issues. If less than zero, then only this
method is used. If greater than zero, then regular orbit determination is tried first, and
tracking is used as a fallback.

• use_perturbed_matrix — If nonzero, specifies that prior to each correction elegant shall
recompute the response matrix. This is useful if the lattice is changing significantly between
corrections.

• disable — If nonzero, the command is ignored.

• use_response_from_computed_orbits — If nonzero, in-plane response matrices are com-
puted using differences of closed orbits, which is slower but may be more accurate. For
cross-plane matrices, this is always the case.

36

correction_matrix_output

7.15 correction matrix output

• type: setup/action command.

• function: provide output of the orbit/trajectory correction matrix.

• sequence: must follow run_setup and definition of steering elements (if wanted, with steering_element).

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&correction_matrix_output

STRING response[4] = NULL, NULL;

STRING inverse[2] = NULL, NULL;

long KnL_units = 0;

long BnL_units = 0;

long output_at_each_step = 0;

long output_before_tune_correction = 0;

long fixed_length = 0;

long coupled = 0;

long use_response_from_computed_orbits = 0;

&end

• response — Array of (incomplete) filenames for SDDS output of the x and y response ma-
trices, plus the cross-plane response matrices. Recommended values, in order: “%s.hrm”
(horizontal response to horizontal correctors), “%s.vrm” (vertical response to vertical cor-
rectors), “%s.vhrm” (vertical response to horizontal correctors), and “%s.hvrm” (horizontal
response to vertical correctors).

• inverse — Array of (incomplete) filenames for SDDS output of the x and y inverse response
matrices. Recommended values: “%s.hirm” and “%s.virm”.

• KnL_units — Flag that, if set, indicates use of “units” of m/K0L rather than m/rad. This
results in a sign change for the horizontal data.

• BnL_units — Flag that, if set, indicates use of “units” of m/(T*m) rather than m/rad. This
is useful for linac work in that the responses are automatically scaled with beam momentum.

• output_at_each_step — Flag that, if set, specifies output of the data at each simulation
step. By default, the data is output immediately for the defined lattice.

• output_before_tune_correction—Flag that, if set, specifies that when output_at_each_step
is set, that output shall occur prior to correcting the tunes.

• fixed_length — Flag that, if set, specifies output of the fixed-path-length matrix.

• coupled — If nonzero, the cross-plane response matrices are computed.

• use_response_from_computed_orbits — If nonzero, in-plane response matrices are com-
puted using differences of closed orbits, which is slower but may be more accurate. For
cross-plane matrices, this is always the case.

37

correct_tunes

7.16 correct tunes

• type: setup command.

• function: set up for correction of the tunes.

• sequence: should follow twiss_output.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&correct_tunes

STRING quadrupoles = NULL;

STRING exclude = NULL;

double tune_x = 0;

double tune_y = 0;

long n_iterations = 5;

double correction_fraction = 0.9;

double tolerance = 0;

long step_up_interval = 0;

double max_correction_fraction = 0.9;

double delta_correction_fraction = 0.1;

long update_orbit = 0;

STRING strength_log = NULL;

long change_defined_values = 0;

long use_perturbed_matrix = 0;

double dK1_weight = 1;

&end

• quadrupoles — List of names of quadrupoles to be used. Several names may be given and
the names may include wildcards. If so, then quadrupoles in each group are changed by
the same amount for each iteration. This would typically be used when the quadrupoles are
nominally identical (though perhaps differing in strength because of introduced errors). If
that’s not the case, the iteration may fail to converge

• exclude — List of names of elements to exclude. This may be used to exclude some
quadrupoles that are matched by wildcards in the quadrupoles list.

• dK1_weight — Weighting factor that is used to minimize the mean-square changes in K1

values in the event that there are more than two families.

• tune_x, tune_y — Desired x and y tune values. If not given, the desired values are assumed
to be the unperturbed tunes.

• n_iterations — The number of iterations of the correction to perform.

• correction_fraction — The fraction of the correction to apply at each iteration.

• tolerance — When both tunes are within this value of the desired tunes, the iteration is
stopped.

38

• step_up_interval — Interval between increases in the correction fraction.

• max_correction_fraction — Maximum correction fraction to allow.

• delta_correction_fraction— Change in correction fraction after each step_up_interval

steps.

• update_orbit — If non-zero, the orbit calculation is updated after each nth adjustment of
the quadupoles.

• strength_log — The (incomplete) name of a SDDS file to which the quadrupole strengths
will be written as correction proceeds. Recommended value: “%s.qst”.

• change_defined_values — Changes the defined values of the quadrupole strengths. This
means that when the lattice is saved (using save_lattice), the quadrupoles will have the
corrected values. This would be used for correcting the tunes of a design lattice, for example,
but not for correcting tunes of a perturbed lattice.

• use_perturbed_matrix — If nonzero, requests use of the perturbed correction matrix in
performing correction. For difficult lattices with large errors, this may be necessary to obtain
correction. In general, it is not necessary and only slows the simulation.

39

coupled_twiss_output

7.17 coupled twiss output

• type: setup/action command.

• function: set up or execute computation of coupled twiss parameters and beam sizes

• sequence: must follow run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&coupled_twiss_output

STRING filename = NULL;

long output_at_each_step = 0;

long emittances_from_twiss_command = 1;

double emit_x = 0;

double emittance_ratio = 0.01;

double sigma_dp = 0;

long calculate_3d_coupling = 1;

long verbosity = 0;

long concat_order = 2;

&end

• filename — The (incomplete) name of the SDDS file to which coupled twiss parameters and
beam sizes will be written. Suggested value: “%s.ctwi”.

• output_at_each_step — If nonzero, then this is a setup command and results in compu-
tations occurring for each simulation step (e.g., for each perturbed machine if errors are
included). If zero, then this is an action command and computations are done immediately
(e.g., for the unperturbed machine). If you wish to compute Twiss parameters on a closed
orbit or after other calculations, be sure to set this control to a nonzero value.

• emittances_from_twiss_command — If nonzero, then the values of the horizontal emit-
tance and the momentum spread are taken from the uncoupled computation done with the
twiss_output command. In this case, the user must issue a twiss_output command prior
to the coupled_twiss_output. If zero, then the values of the horizontal emittance and the
momentum spread are taken from the parameters emit_x and sigma_dp, respectively.

• emit_x — Gives the horizontal emittance, if emittances_from_twiss_command=0.

• emittance_ratio—Gives the ratio of the x and y emittances. Used to determine the vertical
emittance from the horizontal emittance. Note that the computation is not self-consistent.
I.e., the user is free to enter any emittance ratio desired, whether it is consistent with the
machine optics or now.

• sigma_dp — Gives the momentum spread, if emittances_from_twiss_command=0.

This feature was added to elegant using code supplied by V. Sajaev, based on Ripkin’s method.
The code computes the coupled lattice functions, then uses the supplied emittance, emittance ratio,
and momentum spread to compute the beam sizes, bunch length (if rf is included), and beam tilt.

40

divide_elements

7.18 divide elements

• type: setup command.

• function: define how to subdivide certain beamline elements.

• sequence: must precede run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• notes:

– Any number of these commands may be given.

– Not effective unless given prior to run_setup.

– The element_divisions field in run_setup provides a simpler, but less flexible, method
of performing element division. At present, these element types may be divided: CSBEND,
CSRDRIFT, DRIFT, EDRIFT, KOCT, KQUAD, KQUSE, KSEXT, OCTU, QUAD, RBEND, RFCA, SBEND,
SEXT, and SOLE.

– Only effective if given prior to the run_setup command.

• warnings:

– Using save_lattice and element divisions together will produce an incorrect lattice file.

– Element subdivision may produce unexpected results when used with load_parameters

or parameters saved via the parameter entry of the run_setup command. If you wish to
load parameters while doing element divisions or if you wish to load parameters from a
run that had element divisions in effect, you should not load length data for any elements
that are (or were) split. The name and item pattern features of load_parameters are
helpful in restricting what is loaded.

÷_elements

STRING name = NULL;

STRING type = NULL;

STRING exclude = NULL;

long divisions = 0;

double maximum_length = 0;

long clear = 0;

&end

• name — A possibly wildcard-containing string specifying the elements to which this specifi-
cation applies.

• type — A possibly wildcard-containing string specifying the element types to which this
specification applies.

• exclude — A possibily wildcard-containing string specifying elements to be excluded from
the specification.

41

• divisions — The number of times to subdivide the specified elements. If zero, then
maximum_length should be nonzero.

• maximum_length — The maximum length of a slice. This is usually preferrable to specifying
the number of divisions, particularly when the elements divided may be of different lengths.
If zero, then divisions should be nonzero.

• clear — If nonzero, all prior division specifications are deleted.

42

elastic_scattering

7.19 elastic scattering

• type: major action command

• function: perform simulation of elastic scattering at multiple s locations, for use in computing
elastic gas scattering lifetime and loss distribution

• sequence: must follow run_control.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• notes:

– Only available in Pelegant.

– Data may be postprocessed with the command elasticScatteringAnalysis.

&elastic_scattering

STRING losses = NULL;

STRING output = NULL;

STRING log_file = NULL;

double theta_min = 0.001;

double theta_max = 0.010;

long n_theta = 11;

long n_phi = 37;

long twiss_scaling = 0;

double s_start = 0;

double s_end = DBL_MAX;

STRING include_name_pattern = NULL;

STRING include_type_pattern = NULL;

long verbosity = 1;

&end

• losses — The (incomplete) name of an SDDS file to which the record of initial scattering
location, initial scattering angle, and loss coordinates will be written.

• output — The (incomplete) name of an SDDS file to which the final coordinates of all
surviving particles will be written.

• log_file — The (incomplete) name of an SDDS file to which statistical data will be written
as the simulations run. Users should check the MinParticles and MaxParticles columns
as the simulation runs to ensure reasonable load balance (e.g., within 10-20%). If balance
is poor, consider changing the values of n_phi and n_theta slightly. The product of these
values should not evenly divide the number of working cores (which is one less than the total
number of cores).

• theta_min — Minimum polar scattering angle in radians. Should be small enough that
no particle scattered by this angle are lost, regardless of the scattering location. See also
twiss_scaling.

43

• theta_max — Maximum polar scattering angle in radians. Should be large enough that no
particle scattered by this angle survives, regardless of scattering location.

• n_theta — Number of polar scattering angle values on the range theta_min to theta_max.

• n_phi — Number of azimuthal scattering angles on the range [0, π].

• twiss_scaling— If nonzero, then theta_min is scaled by min(
√

βx(0)/βx(s),
√

βy(0)/βy(s)),
where s is the location of the scattering location and s = 0 is the start of the lattice.

• s_start, s_end — Range of s location for simulated scattering sites.

• include_name_pattern—Wildcard-containing string to match to element names in selecting
scattering sites.

• include_type_pattern— Wildcard-containing string to match to element types in selecting
scattering sites.

• verbosity — Higher values may result in more verbose informational output.

44

error_element

7.20 error element

• type: setup command.

• sequence: must follow run_control.

• function: assert a random error defintion for the accelerator.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&error_element

STRING name = NULL;

STRING element_type = NULL;

STRING item = NULL;

STRING type = "gaussian";

double amplitude = 0.0;

double cutoff = 3.0;

long bind = 1;

long bind_number = 0;

longn bind_across_names = 0;

long post_correction = 0;

long fractional = 0;

long additive = 1;

long allow_missing_elements = 0;

STRING after = NULL;

STRING before = NULL;

&end

• name — The possibly wildcarded name of the elements for which errors are being specified.

• element_type— An optional, possibly wildcarded string giving the type of elements to which
the errors should be applied. E.g., element_type=*MON* would match all beam position
monitors. If this item is given, then name may be left blank.

• item — The parameter of the elements to which the error pertains.

• type — The type of random distribution to use. May be one of “uniform”, “gaussian”, or
“plus or minus”. A “plus or minus” error is equal in magnitude to the amplitude given, with
the sign randomly chosen.

• amplitude — The amplitude of the errors.

• cutoff — The cutoff for the gaussian random distribution in units of the amplitude. Ignored
for other distribution types.

• bind, bind_number, bind_across_names — These parameters control “binding” of errors
among elements, which means assigning the same error contribution to several elements.
This occurs if bind is nonzero, which it is by default! If bind is negative, then the sign of
the error will alternate between successive elements. bind_number can be used to limit the
number of elements bound together. In particular, if bind_number is positive, then a positive

45

value of bind indicates that bind_number successive elements having the same name will have
the same error value. Finally, by default, elegant only binds the errors of objects having
the same name, even if they are assigned errors by the same error_element command (i.e.,
through a wildcard name). If bind_across_names is nonzero, then binding is done even for
elements with different names.

• post_correction — A flag indicating whether the errors should be added after orbit, tune,
and chromaticity correction.

• fractional—A flag indicating whether the errors are fractional, in which case the amplitude
refers to the amplitude of the fractional error.

• additive — A flag indicating that the errors should be added to the prior value of the
parameter. If zero, then the errors replace the prior value of the parameter.

• allow_missing_elements— A flag indicating that execution may continue even if no match-
ing elements are found.

• after — The name of an element. If given, the error is applied only to elements that follow
the named element in the beamline.

• before— The name of an element. If given, the error is applied only to elements that precede
the named element in the beamline.

46

error_control

7.21 error control

• type: setup command

• sequence: must follow run_control.

• function: overall control of random errors.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&error_control

long clear_error_settings = 1;

long summarize_error_settings = 0;

long no_errors_for_first_step = 0;

STRING error_log = NULL;

double error_factor = 1;

&end

• clear_error_settings — Clear all previous error settings.

• summarize_error_settings— Summarize current error settings. If non-zero, then the com-
mand has no other function except showing a summary of the current error settings.

• no_errors_for_first_step — If non-zero, then there will be no errors for the first step.
This can be useful for fiducialization of phase and momentum profiles.

• error_log — The (incomplete) name of a SDDS file to which error values will be written.
Recommended value: “%s.erl”.

• error_factor — A value by which to multiply the error amplitudes in all error commands.

The proper use of this command can be confusing. A typical sequence will be as follows:

&error_control

clear_error_settings = 1,

error_log = %s.erl

&end

&error_element ... &end

&error_element ... &end

.

.

.

&error_element ... &end

&error_control

summarize_error_settings = 1

&end

47

find_aperture

7.22 find aperture

• type: setup/major action command.

• function: find the aperture in (x, y) space for an accelerator.

• N.B.: can use parallel resources (Pelegant). Recommend using n-line mode with nx*n_splits
greater than the number of cores (e.g., a factor of 10).

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&find_aperture

STRING output = NULL;

STRING search_output = NULL;

STRING boundary = NULL;

STRING mode = "many-particle";

double xmin = -0.1;

double xmax = 0.1;

double xpmin = 0.0;

double xpmax = 0.0;

double ymin = 0.0;

double ymax = 0.1;

double ypmin = 0.0;

double ypmax = 0.0;

long nx = 21;

long ny = 11;

long n_splits = 0;

double split_fraction = 0.5;

double desired_resolution = 0.01;

long assume_nonincreasing = 0;

long verbosity = 0;

long offset_by_orbit = 0;

long n_lines = 11;

long optimization_mode = 0;

long full_plane = 0;

&end

• output — The (incomplete) name of an SDDS file to send output to. Recommended value:
“%s.aper”.

• mode — May be “many-particle”, “single-particle”, “one-line, “three-lines”, or “n-lines”.
Many-particle searching is much faster than single-particle, but does not allow interval split-
ting to search for the aperture boundary. Both “many-particle” and “single-particle” modes
involve searching from the outside inward, which improves speed but may result in including
islands.

The line modes avoid this by searching form the origin outward. Of these, the one-line and
three-line modes are special: one-line mode searches the line from the origin to (xmax, ymax).
three-line mode searches this line, plus the lines from the origin to (xmax, 0) and (0, ymax).

48

For n-line mode, the number of lines is set with the n_lines parameter. With n > 3, n lines
are explored from (0, 0) to (xmax ∗ sin(θ), ymax ∗ cos(θ)), where θ takes values from −pi/2 to
π/2. In these modes, the output file contains a parameter called “Area,” which gives the area
of the dynamic aperture.

Also still recognized are other modes, namely, “five-line”, “seven-line”, “nine-line”, and
“eleven-line”.

• search_output— The (incomplete) name of an SDDS file for output of detailed information
on each tracked particle (single-particle mode only). Recommended value: “%s.apso”.

• boundary — The (incomplete) name of an SDDS file for the boundary points of the aperture
search. Recommended value: “%s.bnd”. Valid for many- and single-particle modes.

• xmin, xmax, ymin, ymax—Region of the aperture search, in spatial coordinates. The minimum
values are relevant only for many- and single-particle modes.

• xpmin, xpmax, ypmin, ypmax — Region of the aperture search, in slope coordinates. The min-
imum values are relevant only for many- and single-particle modes. Ignored unless xmin=xmax
and ymin=ymax.

• nx — For many- and single-particle modes, the number of x values to take in initial search.
For line modes, this determines the initial x and y step sizes via ∆x = xmax/nx and ∆y =
ymax/nx.

• ny — For many- and single-particle modes, the number of y values to take in search. Ignored
for line modes.

• n_splits — If positive, the number of times to do interval splitting. Interval splitting refers
to searching between the original grid points in order to refine the results. This is done only
for single-particle and line modes.

• split_fraction — If interval splitting is done, how the interval is split.

• desired_resolution— If interval splitting is done, fraction of xmax-xmin to which to resolve
the aperture. Ignored for all but single-particle mode.

• assume_nonincreasing — If this variable is non-zero, the search assumes that the aperture
at y + sign(y) ∗∆y is no larger than that at y. This results in tracking of fewer particles but
may give a pessimistic result. Used only for single- and multi-particle modes.

• offset_by_orbit — A flag indicating whether to offset the transverse beam coordinates by
the closed orbit before tracking. The default value is zero for backward compatibility, but
the recommended value is 1.

• verbosity — A larger value results in more printouts during computations.

• n_lines — In “n-lines” mode, the number of lines to search.

• optimization_mode — If non-zero, then find_aperture is a setup command and can be
used with elegant’s internal optimizer. The quantity DaArea is defined, giving the area of
the dynamic aperture for use in the penalty function. This is available only for the line search
modes.

49

• full_plane — If non-zero, then the search covers both positive and negative y values. Only
available in line-search modes.

50

floor_coordinates

7.23 floor coordinates

• type: action command.

• function: compute floor coordinates for an accelerator.

• sequence: must follow run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&floor_coordinates

STRING filename = NULL;

double X0 = 0.0;

double Z0 = 0.0;

double theta0 = 0.0;

long include_vertices = 0;

long vertices_only = 0;

long magnet_centers = 0;

long store_vertices = 0;

&end

• filename— The (incomplete) name of an SDDS file to send output to. Recommended value:
“%s.flr”.

• X0, Z0, theta0 — Initial X, Z, and angle coordinate of the beamline.

• include_vertices — Flag that, if set, specifies including in the output the coordinates of
the vertices of bending magnets.

• vertices_only — Flag that, if set, specifies that output will contain only the coordinates of
the vertices of bending magnets.

• magnet_centers — Flag that, if set, specifies that output will contain the coordinates of the
centers of all magnets, where the center is defined as the average of the entrance and exit
points. By default, the coordinates of the downstream end are given.

• store_vertices — Flag that, if set, results in storing the floor coordinates for dipole
magnet vertex points. The coordinates are stored in variables with names of the form
magnetName#occurrenceNumber-VP.property, where property is X, Y, Z, theta, phi, and psi.

The “vertex point” for a dipole or string of dipoles is defined as the intersection of the straight
lines from the ideal entrance and exit trajectories. The s quantity for the vertex is defined as the
sum of the actual distance traveled to the start of the dipole or string of dipoles plus the straight-line
distance from the entrace to the vertex. Hence, one cannot subtract the s values for two successive
vertices and expect to get the distance between the vertices.

51

frequency_map

7.24 frequency map

• type: major action command.

• function: compute frequency map from tracking Note that the number of turns tracked is set
by the run_control command.

• can use parallel resources (Pelegant)

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&frequency_map

STRING output = NULL;

double xmin = -0.1;

double xmax = 0.1;

double ymin = 1e-6;

double ymax = 0.1;

double delta_min = 0;

double delta_max = 0;

long nx = 21;

long ny = 21;

long ndelta = 1;

long verbosity = 1;

long include_changes = 0;

long quadratic_spacing = 0;

long full_grid_output = 0;

&end

• output — The (incomplete) name of an SDDS file to send output to. Recommended value:
“%s.fma”. For the parallel version, particles will be listed in essentially random order. If
needed, sddssort can be used to sort particles by initial coordinates.

• xmin, xmax — Limits of grid of initial x coordinates for tracking.

• ymin, ymax — Limits of grid of initial y coordinates for tracking. ymin should be a small,
positive value so that there is some betatron oscillation from which to get the tune.

• delta_min, delta_max — Limits of grid of initial δ coordinates for tracking. Note that par-
ticles are not centered around the dispersive closed orbit. Hence, the tracking is appropriate
to simulation of dynamics from a touschek scattering event.

• nx — Number of values of x coordinate in the grid.

• ny — Number of values of y coordinate in the grid.

• ndelta — Number of values of δ coordinate in the grid.

• verbosity — If nonzero, prints possibly useful information while running.

52

• include_changes — If nonzero, then computes not only the tunes, but also the changes in
the tunes. This is expressed in terms of the diffusion, which is defined as

d = log10
(

∆ν2x +∆ν2y
)

(1)

where ∆νx and ∆νy are respectively the differences in x and y tunes from the first and second
half of the tracking (the total number of turns is equal to the value set in run_setup). The
diffusion rate,

dr = log10

√

∆ν2x +∆ν2y

N

 , (2)

is also computed. dr is the more conventional quantity, computed by programs such as
TRACY and MAD [53].

• quadratic_spacing— If non-zero, the spacing of points is quadratic rather than linear, thus
emphasizing the higher amplitude regions.

• full_grid_output — If non-zero, all grid points are represented in the output file, even if
tracking or tune determination failed. This makes it possible to plot with programs (e.g.,
sddscontour) that require a strictly uniform grid.

53

global_settings

7.25 global settings

• type: action command.

• sequence: should precede run_setup.

• function: change global settings.

• Command syntax, including use of equations and subcommands, is discussed in 7.2. One way
to use the global_settings command is in a configuration file, which can be supplied via
the -configuration option or ELEGANT_CONFIGURATION environment variable; an example
of using this would be to set MPI I/O options an a per-system basis. N.B.: unlike other
commands, values given for parameters in global_settings commands become the new
default for subsequent invocations of the command during the same run. Hence multiple
commands can be used to set individual values without overriding previously-given settings.

&global_settings

long inhibit_fsync = 0;

long echo_namelists = 1;

long mpi_randomization_mode = 3;

long exact_normalized_emittance = 0;

double SR_gaussian_limit = 3.0;

long inhibit_seed_permutation = 0;

STRING log_file = NULL;

STRING error_log_file = NULL;

long mpi_io_force_file_sync = 0;

long usleep_mpi_io_kludge = 0;

long mpi_io_read_buffer_size = 0;

long mpi_io_write_buffer_size = 0;

long parallel_tracking_based_matrices = 1;

long share_tracking_based_matrices = 1;

double tracking_matrix_step_factor = 1;

double tracking_matrix_points = 9;

&end

• inhibit_fsync—By default, elegant forces file synchronization across a network file system
to ensure that users see up-to-date files as soon as possible. In cases where a great deal of
output is generated, this can degrade performance. Setting this parameter to 1 will turn off
synchronization until the end of the run.

• echo_namelists — By default, elegant echoes all namelist input to the terminal. If this
parameter is set to 0, this output will be inhibited.

• SR_gaussian_limit — By default, elegant uses a 3-σ cutoff for the gaussian random num-
bers used in simulation of synchrotron radiation from CSBEND, CSRCSBEND, KQUAD, KSEXT, and \verbSREFFECTS—.
This parameter allows changing the cutoff.

• inhibit_seed_permutation— If nonzero, randomization of the user-supplied random num-
ber seed is not performed. This feature is useful in that it provides a higher degree of apparent
randomness, in that small changes in the seed result in very different random sequences.

54

• log_file — By default, elegant writes status information to the terminal. If a filename is
supplied for this parameter, the output will instead go to the file. On Linux and Unix, using
/dev/null will result in the output being discarded.

• error_log_file — By default, elegant writes error messages to the terminal. If a filename
is supplied for this parameter, the output will instead go to the file. On Linux and Unix,
using /dev/null will result in the output being discarded.

• share_tracking_based_matrices — If non-zero, then the matrices determined by tracking
for various elements (e.g., BRAT, BGGEXP, CCBEND) are computed only once for a set of identical
elements, then shared. This can save considerable computation time.

• mpi_randomization_mode— Controls how the random numbers are seeded on multiple pro-
cessors

– 1 — This is the original default, which showed issues in some simulations. The seed on
the ith processor is s0 + 2 ∗ i.

– 2 — The seed on the ith processor is s0 + 2 ∗ i2.
– 3 — This is the new default. The seed on the ith processor is s0 + i ∗ (i+ 1).

– 4 — The seed on the ith processor is s0+Ri, where Ri is the i
th random integer returned

by the system rand() function.

• exact_normalized_emittance— By default, elegant uses an approximate computation for
the normalized emittance, namely, ǫn = ǫ〈βγ〉, where ǫ is the geometric emittance computed
from the trace-space coordinates. If this variable is set to a non-zero value, elegant instead
uses a slower but more accurate method, namely, using the momentum coordinates. [43].
The results will show up in the sigma and final output files, if these are requested in the
run_setup command.

• mpi_io_force_file_sync — If non-zero, Pelegant will perform a file synchronization after
writing each row of an SDDS file. This can significantly impact performance, but can solve
problems on some filesystems that result in corrupted files or files in which zeros appear in
place of the expected data.

• mpi_io_read_buffer_size — If non-zero, Pelegant will change the read buffer size to the
given value. May allow improving read performance, but should be used with care.

• mpi_io_write_buffer_size— If non-zero, Pelegant will change the write buffer size to the
given value. May allow improving write performance, but should be used with care.

• usleep_mpi_io_kludge— If non-zero, Pelegant will sleep for the given number of microsec-
onds after writing each row of an SDDS file. This can impact performance, but can solve prob-
lems on some filesystems that result in corrupted files or files in which zeros appear in place of
the expected data. It may give better performance than setting mpi_io_force_file_sync=1.
A value of 100 is suggested as a starting point, but this will be highly system-dependent.

• parallel_tracking_based_matrices— If non-zero, then the matrices determined by track-
ing for various elements (e.g., BRAT, BGGEXP, CCBEND) are computed using parallel resources
in Pelegant. This can save considerable wall clock time. N.B.: This is set to zero when using
parallel_optimization_setup.

55

• share_tracking_based_matrices — If non-zero, then the matrices determined by tracking
for various elements (e.g., BRAT, BGGEXP, CCBEND) are computed only once for a set of identical
elements, then shared.

• tracking_matrix_step_factor — The default step size for tracking-based matrices is 5 ×
10−5 (in the appropriate units for each corodinate). This can be increased or decreased by
supplying a value for tracking_matrix_step_factor.

• tracking_matrix_points — By default, five grid points are used in each dimension for
tracking-based matrix determination. This can be increased by setting tracking_matrix_points
to a larger, odd value, at the expense of longer running time. (The run time scales approxi-
mately as the sixth power of this value.)

• tracking_matrix_step_size — Sets the step sizes, in each of the six coordinates, used for
tracking-based matrix determination

56

ignore_elements

7.26 ignore elements

• type: setup command.

• function: causes specified elements to be ignored during tracking.

• Must precede run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• notes:

– Any number of these commands may be given.

– This command can provide improved parallel performance in cases where large numbers
of non-transforming elements (e.g., MARK or MONI elements) exist in a beamline. (These
elements can impact performance because elegant checks particles against aperture
limits after every element.) Using the show_element_timing flag in run_setup can
help determine if this will help.

– This command cannot be used if centroid or sigma output is requested in run_setup.

&ignore_elements

STRING name = NULL,

STRING type = NULL,

STRING exclude = NULL,

long disable = 0;

long clear = 0;

long completely = 0;

&end

• name — Possibily wild-card containing string specifying the elements to which the operation
is to be applied.

• type — Possibily wild-card containing string specifying the element types to which the op-
eration is to be applied.

• exclude — Possibily wild-card containing string specifying elements to be excluded from the
operation. Does not affect elements included by other specifications.

• disable — If nonzero, the command is ignored.

• clear — If nonzero, all prior specifications are deleted.

• completely — If nonzero, the element is ignore not only for tracking, but for all purposes.
(This allows, for example, requesting sigma and centroid output from run_setup.)

57

inelastic_scattering

7.27 inelastic scattering

• type: major action command

• function: perform simulation of inelastic scattering at multiple s locations, for use in com-
puting inelastic gas scattering lifetime and loss distribution

• sequence: must follow run_control.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• notes:

– Only available in Pelegant.

– Data may be postprocessed with the command inelasticScatteringAnalysis.

&inelastic_scattering

STRING losses = NULL;

STRING output = NULL;

STRING log_file = NULL;

double k_min = 0.001;

STRING momentum_aperture = NULL;

double momentum_aperture_scale = 0.90;

double momentum_aperture_periodicity = 0;

long n_k = 101;

double s_start = 0;

double s_end = DBL_MAX;

STRING include_name_pattern = NULL;

STRING include_type_pattern = NULL;

long verbosity = 1;

long soft_failure = 0;

long allow_watch_file_output = 0;

&end

• losses — The (incomplete) name of an SDDS file to which the record of initial scattering
location, initial scattering δ, and loss coordinates will be written.

• output — The (incomplete) name of an SDDS file to which the final coordinates of all
surviving particles will be written.

• log_file — The (incomplete) name of an SDDS file to which statistical data will be written
as the simulations run. Users should check the MinParticles and MaxParticles columns
as the simulation runs to ensure reasonable load balance (e.g., within 10-20%). If balance is
poor, consider changing the value of n_delta slightly.

• k_min — Minimum energy k of the brehmsstrahlung photon as a fraction of the beam energy.
The electron has δ = −k after scattering. k_min should be small enough that no electron
scattered by -k_min is lost, regardless of the scattering location.

• n_k — Number of scattering values on the range k_min to 1.

58

• momentum_aperture, momentum_aperture_scale — If given, names a file giving the mo-
mentum aperture vs s, which is interpolated at the scattering locations to obtain the local
momentum aperture. Such a file may be obtained from running the momentum_aperture com-
mand. The absolute values of the values in the deltaNegative column will be used in place
of k_min. The k_min values thus obtained are multiplied by momentum_aperture_scale, so
there is some assurance that the minimally-scattered particles will survive. This ensures that
the results are valid for computation of loss rates, for example.

• momentum_aperture_periodicity— If nonzero, the momentum aperture data from momentum_aperture

is periodic with the given periodicity.

• s_start, s_end — Range of s location for simulated scattering sites.

• include_name_pattern—Wildcard-containing string to match to element names in selecting
scattering sites.

• include_type_pattern— Wildcard-containing string to match to element types in selecting
scattering sites.

• verbosity — Higher values may result in more verbose informational output.

• soft_failure — If nonzero, failure to kind a loss does not result in aborting the run.

• allow_watch_file_output — If nonzero, WATCH elements provide output during tracking.

59

insert_elements

7.28 insert elements

• type: action command.

• function: Insert elements into a beamline at specified locations. This is a convenient way to
add elements to a beamline without modifying the lattice file.

• sequence: must follow run_setup.

• notes: The modified beamline can be saved through save_lattice command. Be sure to use
“output seq = 1” option in that command.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&insert_elements

STRING name = NULL;

STRING type = NULL;

STRING exclude = NULL;

double s_start = -1;

double s_end = -1;

long skip = 1;

long disable = 0;

long insert_before = 0;

long add_at_end = 0;

long add_at_start = 0;

STRING element_def = NULL;

long total_occurrences = 0;

long occurrence[100]={0};

&end

• name — Possibly wild-card containing string specifying the names of the elements after which
the new element is inserted. A list of comma- or space-separated names may be given.

• type — Possibly wild-card containing string specifying the type of the elements after which
the new element is inserted.

• exclude — Possibly wild-card containing string specifying the names of elements to be ex-
cluded from the specification.

• skip — New elements are inserted at every nth specified location.

• s_start, s_end — If positive, these give the starting and ending s locations for insertion of
new elements. Note that the s locations are not updated as elements are inserted, but only
after completion of all insertions covered by a single command.

• disable — If nonzero, the command is ignored.

• insert_before — If nonzero, the insertions are before the selected elements. By default,
insertion is after the selected elements.

60

• add_at_end — If nonzero, the element is also inserted to the end of the beamline.

• add_at_start — If nonzero, the element is also inserted to the start of the beamline, ahead
of all other elements.

• element_def — The definition of the new element should be just as it would be entered in
the lattice file.

• total_occurrences, occurrence — These parameters are used to insert the new elements
after specified occurrences of the element name. total_occurrences specifies how many new
elements to add, up to a maximum of 100, while the entries in the array occurrence specify
the occurrences after which to add the new elements. If total_occurrences is non-zero, then
skip must be set to zero and the name must be the exact name (no wild-card matching).

61

insert_sceffects

7.29 insert sceffects

• type: setup command.

• function: set up for transverse space charge calculation.

• sequence: must precede run_setup.

• NB: this command is intended only for simulation of space-charge kicks in rings. Please read
the manual page for SCMULT for details on the algorithm.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&insert_sceffects

STRING name = NULL;

STRING type = NULL;

STRING exclude = NULL;

long disable = 0;

long clear = 0;

STRING element_prefix = "MYSC";

long skip = 0;

long vertical = 0;

long horizontal = 0;

long nonlinear = 0;

long uniform_distribution = 0;

long verbosity = 0;

double averaging_factor = 1;

&end

• name — Possibily wild-card containing string specifying the name of the elements after which
to insert the space charge kick element.

• type — Possibily wild-card containing string specifying the type of the elements after which
to insert the space charge kick element.

• exclude — Possibily wild-card containing string specifying the name of elements to be ex-
cluded from the insertion of the space charge kick element.

• disable — If nonzero, the command is ignored.

• clear — If nonzero, all prior space charge insertions are deleted.

• element_prefix — Name under which the space charge kick will appear in the beamline.

• skip — If nonzero, the given number of insertion locations are skipped. If zero, only one
space charge kick is inserted at the end of beamline.

• vertical, horizontal, nonlinear — If non-zero, then space charge is included in the plane
in question.

62

• uniform_distribution—Used for bi-Gaussian distributed beam (coasting beam), i.e., beam
that is uniform in z but gaussian in x and y.

• verbosity — Larger non-zero values request greater amounts of detail in printouts.

• averaging_factor — For nonlinear space charge mode only, this parameter allows applying
an infinite-impulse-response (IIR) filter to the turn-by-turn beam size data in order to reduce
the effects of noise. A value of 1 means that only data from the present turn is used, while
values approaching 0 will tend to use the initial beam sizes only. In more detail, the effective
rms beam size σ̂ used in the calculation of the kicks for the ith turn is

σ̂i = fσi + (1− f)σ̂i, (3)

where σi is the actual rms beam size. N.B.: strictly speaking, simulations performed with
f 6= 1 are invalid, as the effect of strong space charge could be understated. However, judicious
use of this parameter may allow valid simulations with fewer particles. The user should vary
the parameter to ensure that results are insenstive to the value.

Important notes:

• By default skip=0, which results in only one SCMULT element at the end of the beamline,
regardless of whether values are given for the name or type fields.

• This element is not designed for space charge calculations in guns or linacs. It is only intended
for simulating space charge in rings.

• This command can not work with concatenation-based matrix tracking.

• Some users use matched_to_cell in the bunched_beam command. This will erase SCMULT
assignments along the beamline. In this case, issue another twiss_output command just
before tracking.

63

ion_effects

7.30 ion effects

• type: setup command.

• function: set up for modeling of residual gas ions.

• sequence: must follow run_setup.

• Notes:

1. This feature is considered experimental and should be used with caution. Feedback is
welcome. The fitting-based methods, i.e., bigaussian, bilorentzian, trigaussian,
and trilorentzian, typically show instability when it is not expected and may well
have noise challenges that have not been resolved.

2. One or more IONEFFECTS elements must be inserted in the lattice. This can be done
manually, or using the insert_elements command.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&ion_effects

STRING pressure_profile = NULL;

double pressure_factor = 1.0;

STRING ion_properties = NULL;

STRING beam_output = NULL;

long beam_output_all_locations = 0;

STRING ion_density_output = NULL;

long ion_output_all_locations = 1;

long ion_species_output = 0;

STRING field_calculation_method = NULL;

double distribution_fit_target = 0.03;

double distribution_fit_tolerance = 1e-5;

long distribution_fit_evaluations = 300;

long distribution_fit_passes = 3;

long distribution_fit_restarts = 10;

long hybrid_simplex_comparison_interval = -1;

STRING fit_residual_type = NULL;

long macro_ions = 0;

long symmetrize = 0;

long generation_interval = 1;

long multiple_ionization_interval = 100;

double multiple_ionization_energy_peak = 20;

double multiple_ionization_energy_rms = 10;

double ion_span[2] = {0, 0};

double ion_bin_divisor[2] = {10.0, 10.0};

double ion_range_multiplier[2] = {2.0, 2.0};

double ion_sigma_limit_multiplier[2] = {0, 0};

long ion_histogram_max_bins = 1000;

long ion_histogram_min_per_bin = 5;

64

STRING ion_histogram_output = NULL;

double ion_histogram_output_s_start = -1;

double ion_histogram_output_s_end = -1;

long ion_histogram_output_interval = 1000;

long ion_histogram_min_output_bins = 200;

long disable_until_pass = 0;

long freeze_ions_until_pass = 0;

long freeze_electrons_until_pass = 0;

long verbosity = 0;

&end

• pressure_profile — Name of an SDDS file giving the s-dependent gas pressure for various
gas species. Column names will be matched to the entries in the SourceName column of the
ion_properties file.

• pressure_factor—Factor by which to multiply the pressures given in the pressure_profile.

• ion_properties — Name of an SDDS file giving properties of ions. Column names are

– IonName — String column giving the name of the ion.

– Mass — Floating-point column giving the ion mass, in AMU.

– ChargeState — Integer column giving the ion charge state (a positive integer).

– SourceName— String column giving the name of the source gas for this ion. Alternately,
for a multiply ionized molecule (e.g. CO++) one can give a source ion (e.g. CO+). The
source ion must also be defined in the ion_properties file.

– CrossSection — Floating-point column giving the cross section for producing the ion
from the source, in Mb.

• beam_output—Possibly incomplete name of an SDDS file to which beam data will be written.
Asking for this output can significantly reduce performance, so it should generally be used
for testing only.

• beam_output_all_locations— If nonzero, beam_output includes data at the location of all
IONEFFECTS elements. By default, only the first element is included.

• ion_density_output— Possibly incomplete name of an SDDS file to which ion density data
will be written.

• ion_output_all_locations — If nonzero, ion_density_output includes data at the loca-
tion of all IONEFFECTS elements. By default, only the first element is included.

• ion_species_output— If nonzero, ion_density_output includes data for each ion species.

• field_calculation_method — By default, the fields are computed on the assumption that
the beam and ion distributions are gaussian. This is a good assumption for the beam,
but not highly accurate for the ions. More accurate, but slower, methods is sums of two
or three gaussians, or sums of two or three lorentzians, which can be invoked by setting
field_calculation_method to "bigaussian", "trigaussian", "bilorentzian", or "trilorentzian";

65

these are collectively referred to as “histogram fitting methods” below. In the bigaussian case,
the charge distribution is of the form

ρ(x, y) = (G(x, hx,1, σx,1, cx,1)+G(x, hx,2, σx,2, cx,2))∗(G(y, hy,1, σy,1, cy,1)+G(y, hy,2, σy,2, cy,2)),
(4)

where G(q, h, σ, c) = h exp−(q − c)2/(2σ2). The charge distribution for the bilorentzian is

ρ(x, y) = (L(x, hx,1, ax,1, cx,1)+L(x, hx,2, ax,2, cx,2))∗(L(y, hy,1, ay,1, cy,1)+L(y, hy,2, ay,2, cy,2)),
(5)

where L(q, h, a, c) = h/(1 + (q − c)2/a2).

• distribution_fit_target — If the distribution field calculation method is selected, gives
the target for the fractional deviation of the fit. Smaller numbers will result in long run times.

• distribution_fit_tolerance — If the distribution field calculation method is selected,
gives the tolerance for the fractional deviation of the fit. Smaller numbers will result in long
run times but higher likelihood of reaching the target.

• distribution_fit_evaluations, distribution_fit_passes, distribution_fit_restarts
— Parameters for the simplex optimizer that performs the distribution fit. Note that in
Pelegant, a hybrid simplex method is used, which appears to converge quickly if the default
parameters are used.

• fit_residual_type—Residual type for distribution fitting. The default is max-ad-plus-ad-charge,
which indicates using the sum of the maximum absolute deviation and the normalized absolute
deviation of the total charge, where the latter is computed from difference of the actual total
ion charge and the analytical integral of the charge in the summed distributions; this tends to
ensure that there are no hidden spikes in the distribution due to overfitting. Other options are
sum-ad (sum of normalized absolute deviation), rms-dev (sum of normalized rms deviation),
max-ad (maximum normalized absolute deviation), max-ad-plus-rms-dev (sum of maxi-
mum normalized absolute deviation and normalized rms deviation), sum-ad-plus-rms-dev,
rms-dev-plus-ad-sum, sum-ad-plus-ad-sum, rms-dev-plus-centroid, and rms-dev-plus-ad-charge.

• macro_ions — The number of macro ions to generate per bunch on each turn for which
generation is done. The macro ion charge is adjusted according to the cross section and
bunch charge. May be overriden by the MACRO_IONS parameter on individual IONEFFECTS
elements. If this value is too small, the ion distribution will be noisy, which may result in
unreliable results. When using the parallel version, setting macro_ions to 1,000 or higher is
not unreasonable.

• symmetrize — If nonzero, ions are emitted in symmetric pairs to ensure that the centroids
don’t deviate from the electron beam centroids because of noise. Doubles the number of
macro ions that are emitted. Intended primarily for testing purposes.

• generation_interval— The number of bunches between generation of ions. The macro ion
charge is adjusted to account for this, so the effective ion charge after many turns is the same.
May be overridden with the GENERATION_INTERVAL parameter on individual IONEFFECTS
elements. The actual condition for generation of ions is such that the generating bunches
vary on each turn. This can be used to effectively reduce macro_ions below 1, to prevent
generation of too many macro ions. This will result in noisy histograms and should be used
with caution.

66

• multiple_ionization_interval — The number of bunches between multiple ionization
calculations. The macro ion charge is adjusted to account for this, so the effective ion charge
after many turns is the same.

• multiple_ionization_energy_peak, multiple_ionization_energy_rms — Specifies the
distribution of the energy of multiply-ionized ions in terms of the peak (or centroid) of the
distribution and its rms width, in eV.

• ion_span — The transverse half-extent, in meters, of the region within which ions are mod-
eled. Ions moving outside this region are considered lost. May be overriden by the X_SPAN

and Y_SPAN parameters on individual IONEFFECTS elements.

• ion_bin_divisor—For histogram fitting methods, the number of ion bins per rms parameter
of the electron beam.

• ion_range_multiplier— For histogram fitting methods, used to determine the full span of
the ion binning region bins in units of the rms parameter of the ion distribution. The sign of
the value determines which algorithm is used. For m < 0, the binning range is |m|σion. For
m = 0, the full span of the ion distribution is included; this may result in a very large number
of bins being used to cover a few outlying ions, and is not recommended. For m > 0, the
code first finds the approximate range containing the central 80% of the ions, then multiplies
by m to get the range used.

• ion_sigma_limit_multiplier — For histogram fitting methods, the minimum value for
either of the ion sigmas (for bigaussian) or size parameters (for bilorentizan) in units of the
bin size. Use to prevent one of the gaussians or lorentzians from being too delta-function-like.

• ion_histogram_max_bins — Maximum number of ion bins for fitting methods. If this limit
is reached, the span of the histograms will be reduced to ensure that the central portion is
resolved. If the value is too large, the histograms may be noisy, which will make the fits
unreliable. Also, a large value will result in reduced parallel efficiency, as processors must
pass around more data.

• ion_histogram_min_per_bin — Minimum number of ions per bin (on average).

• ion_histogram_output, ion_histogram_output_s_start, ion_histogram_output_s_end,
ion_histogram_output_interval, ion_histogram_max_bins — Controls for the output of
ion histograms when using histogram fitting methods. ion_histogram_output gives the (in-
complete) filename. ion_histogram_output_s_start and ion_histogram_output_s_end

give limits on the s coordinate of the IONEFFECTS element. ion_histogram_output_interval
gives the interval in passes between output.

• verbosity — Larger values result in more output during running. Used for debugging only.

The user is strongly advised to study the ion histograms by using the ion_histogram_output
parameter to request this data. The histograms should not be excessively noisy. The data also
includes the fits, which should be close to the data. (For “gaussian” mode, this is generally not
possible.) A sample command to examine the histograms and fits for the y plane (generally the
most difficult) is

sddsplot -column=Position,Charge* run.ionHist -split=page -groupby=page -separate=page -graph=line,vary

67

linear_chromatic_tracking_setup

7.31 linear chromatic tracking setup

• type: setup command.

• function: define chromatic variation of beta functions, tunes, etc. for using in fast linear-
chromatic tracking

• sequence: must follow run_setup.

• N.B.: This command is deprecated and no longer maintained. Use a beamline containing one
or more ILMATRIX elements instead. This provides much more functionality.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&linear_chromatic_tracking_setup

double nux[4] = {-1, 0, 0, 0};

double betax[2] = {1.0, 0.0};

double alphax[2] = {0.0, 0.0};

double etax[2] = {0.0, 0.0};

double etapx[2] = {0.0, 0.0};

double nuy[4] = {-1, 0, 0, 0};

double betay[2] = {1.0, 0.0};

double alphay[2] = {0.0, 0.0};

double etay[2] = {0.0, 0.0};

double etapy[2] = {0.0, 0.0};

double alphac[2] = {0.0, 0.0};

&end

• nux — Provide the horizontal tune plus its first three chromatic derivatives, i.e., ∂νx/∂δ,
∂2νx/∂δ

2, and ∂3νx/∂δ
3.

• betax — Provide the horizontal beta function plus its chromatic derivative.

• alphax — Provide the horizontal alpha function plus its chromatic derivative.

• etax — Provide the first- and second-order horizontal dispersion: ηx = ηx [0] + ηx [1] δ.

• etapx — Provide the first- and second-order horizontal dispersion slope.

• alphac— Provide the first and second-order momentum compaction. N.B: if you are tracking
with an rf cavity, be sure that your lattice length equal to the actual circumference. See the
example below.

68

link_control

7.32 link control

• type: setup command.

• function: overall control of element parameter links.

• sequence: must follow run_control.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&link_control

long clear_links = 1;

long summarize_links = 0;

long verbosity = 0;

&end

• clear_links — Clear all previously set links.

• summarize_links — Summarize all current set links.

• verbosity — A larger value results in more output during computations.

69

link_elements

7.33 link elements

• type: setup command.

• function: assert a link between parameters of accelerator elements.

• sequence: must follow run_control and link_control.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&link_elements

STRING target = NULL;

STRING exclude = NULL;

STRING item = NULL;

STRING source = NULL;

STRING source_from_target_edit = NULL;

STRING source_position = "before";

STRING mode = "dynamic";

STRING equation = NULL;

double minimium = -DBL_MAX;

double maximum = DBL_MAX;

long exclude_self = 1;

&end

• target — The name of the elements to be modified by the link. May contain wild-cards.

• exclude — Wildcard sequence to match to element names. If a match is found, the element
is excluded from the link.

• item — The parameter that will be modified.

• source — The name of the elements to be linked to.

• source_from_target_edit — If given and if source is not given, an editing command to
create the name of the elements to be linked to from the name of the target. Uses the syntax
of the editstring program.

• source_position — May be one of “first”, “before”, “after”, “adjacent”, “nearest”, or
“same-occurrence”.

• mode— May be either “dynamic” or “static”. A dynamic link is asserted whenever the source
is changed (during correction, for example). A static link is asserted only when an error or
variation is imparted to the source, and at the end of correction.

• equation—An rpn equation for the new item value in terms of the item values for the source.
The prior value of the item is on the top of the stack. To refer to the source parameter values,
use the name of the parameters. To refer to the initial source parameter values, append “0”
to the parameter name. These names must appear in capital letters.

• minimum, maximum — Minimum and maximum values that will be assigned to the target
parameter.

70

• exclude_self — If nonzero, self-links are blocked. It is not recommended to change this.

71

load_parameters

7.34 load parameters

• type: setup command.

• function: load parameters for elements from an SDDS file.

• sequence: must follow run_setup and precede run_control and error_control (if present).

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&load_parameters

STRING filename = NULL;

STRING filename_list = NULL;

STRING include_name_pattern = NULL;

STRING exclude_name_pattern = NULL;

STRING include_item_pattern = NULL;

STRING exclude_item_pattern = NULL;

STRING include_type_pattern = NULL;

STRING exclude_type_pattern = NULL;

STRING edit_name_command = NULL;

long change_defined_values = 0;

long clear_settings = 0;

long allow_missing_elements = 0;

long allow_missing_parameters = 0;

long allow_missing_files = 0;

long force_occurence_data = 0;

long verbose = 0;

long skip_pages = 0;

long use_first = 0;

&end

• filename— Name (possibly containing the “%s” field) of SDDS file from which to take data.
The file must contain some of the following columns:

– ElementName — Required string column. The name of the element to change.

– ElementParameter — Required string column. The name of the parameter of the element
to change.

– ParameterValue — Optional double column. If given, gives value of the parameter
named in ElementParameter for element named in ElementName.

– ParameterValueString — Optional string column. If ParameterValue is not present, then
this column must be present. The string data will be scanned, if necessary, to obtain a
value for the parameter.

– ParameterMode — Optional string column. If given, for each row the value must be
one of “absolute”, “differential”, “ignore”, or “fractional”. The meaning of these modes
is as follows: absolute mode means the given value is used as the new value for the
parameter; differential mode means the given value is added to the existing value for the
parameter; ignore mode means the value is ignored; fractional mode means the existing

72

value is increased by the product of the given value and the existing value (i.e., the given
value is a fractional change).

Unless change_defined_values is set, successive pages of the file are used for successive steps
of the simulation. Several elegant commands generate output that may be used (on a sub-
sequent run) with load_parameters; among these are the tune and chromaticity correction
commands and the run_setup command (parameters output).

• filename_list— A list of filenames, which may be given in place of filename. If used, each
file in the list is treated as if it was separately supplied with an individual load_parameters
command.

• include_name_pattern, exclude_name_pattern — A comma- or space-separated list of
wildcard patterns to be used in selecting, respectively, which elements to include and which
to exclude from loading. To be used, data must match at least one inclusion pattern and no
exclusion patterns.

• include_item_pattern, exclude_item_pattern — A comma- or space-separated list of
wildcard patterns to be used in selecting, respectively, which items (i.e., which element pa-
rameters) to include and which to exclude from loading. To be used, data must match at
least one inclusion pattern and no exclusion patterns.

• include_type_pattern, exclude_type_pattern — Wildcard patterns to be used in select-
ing, respectively, which element types (e.g., QUAD, DRIFT) to include and which to exclude
from loading. To be used, data must match at least one inclusion pattern and no exclusion
patterns.

• edit_name_command — A command using the syntax of the editstring program, allowing
the strings in the ElementName column to be modified before values are assigned.

• change_defined_values — Changes the defined values of the parameters. This means that
when the lattice is saved (using save_lattice), the parameters will have the altered values.
Also, if one wants to alter the values for all steps of the simulation, one must set this flag.

Note that the ElementOccurence data is normally ignored if change_defined_values is
nonzero. This is because there is only one definition of each element, even if it is used
multiple times. This behavior can be altered with the next control.

• force_occurence_data— If set, then occurence data is used even in change_defined_values
mode. When loading data for a highly repetitive system, where many elements have identical
names, this can greatly speed completion of the operation.

• use_first — It is possible that the input file will contain multiple lines for any given pa-
rameter. In this case, elegant will by default process all lines. For example, if the lines
give differential values, then all would be included. However, if the lines give absolute values,
then the last one will overwrite the previous values; this flag allows overriding the behavior
in this case to force elegant to use the first value. This can have speed advantages for cases
where there are many identical occurences of the same element with identical values for the
parameters.

• clear_settings — If set, clear all settings and files being used for loading parameters.

73

• allow_missing_elements — If set, allow elements in the file that are not in the lattice. In
this case, the nonapplicable data is simply ignored.

• allow_missing_parameters — If set, it is not an error if any element in the lattice lacks a
parameter that exists in the file.

• allow_missing_files — If set, it is not an error if any listed file is missing.

• verbose — If set, provide informational printouts about changes to parameters.

• skip_pages — Specify the number of pages of input to skip.

74

matrix_output

7.35 matrix output

• type: setup/action command.

• function: generate matrix output, or set up to do so later.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&matrix_output

STRING printout = NULL;

long printout_order = 1;

STRING printout_format = "%22.15e ";

long full_matrix_only = 0;

long mathematica_full_matrix = 0;

long print_element_data = 1;

STRING SDDS_output = NULL;

long SDDS_output_order = 1;

long individual_matrices = 0;

STRING SDDS_output_match = NULL;

long output_at_each_step = 0;

STRING start_from = NULL;

long start_from_occurence = 1;

&end

• printout — The (incomplete) name of a file to which the matrix output will be printed (as
text). Recommended value: “%s.mpr”.

• printout_order — The order to which the matrix is printed.

• printout_format — The C-style formatting statement for the matrix elements. A space,
comma, or other separator should appear at the end of the string.

• full_matrix_only — A flag indicating that only the matrix of the entire accelerator is to
be output.

• print_element_data — A flag indicating whether the element data should be printed out.

• SDDS_output — The (incomplete) name of an SDDS file to which the matrix will be written.
Recommended value: “%s.mat”.

• SDDS_output_order — The order to which the matrix is output in SDDS format.

• individual_matrices — If non-zero, the matrices in the SDDS file are the individual on-
trajectory matrices of the elements, rather than the concatenated matrix of the beamline.

• SDDS_output_match— A wildcard string which element names must match in order for data
to appear in the SDDS output file.

• output_at_each_step — A flag indicating whether matrix output is desired at every simu-
lation step.

75

• start_from — The optional name of the accelerator element from which to begin concate-
nation and output.

• start_from_occurence — If start_from is not NULL, the number of the occurrence of the
named element from which to start.

76

modulate_elements

7.36 modulate elements

• type: setup command.

• function: define parameters for time-dependent modulation of elements

• sequence: must follow run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&modulate_elements

STRING name = NULL;

STRING item = NULL;

STRING type = NULL;

STRING expression = NULL;

STRING filename = NULL;

STRING time_column = NULL;

STRING amplitude_column = NULL;

long refresh_matrix = 0;

long differential = 1;

long multiplicative = 0;

long start_occurence = 0;

long end_occurence = 0;

double s_start = -1;

double s_end = -1;

STRING before = NULL;

STRING after = NULL;

long verbose = 0;

double verbose_threshold = 0;

STRING record = NULL;

long flush_record = 1;

&end

N.B.: This command will produce unpredictable results when used with error_element, alter_elements,
and load_parameters (except when change_defined_values=1). It should work properly with
link_elements in turn-by-turn mode when the source element is modulated, but not when the
target element is modulated.

• name — A possibly-wildcard-containing string giving the names of the elements to modulate.
If not specified, then one must specify type.

• item — The name of the parameter to modulate.

• type — A possibly-wildcard-containing string giving the names of element types to modulate.
May be specified with name or by itself.

• expression — RPN expression for the modulation amplitude A. The value of the time is on
top of the stack.

77

• filename — Name of SDDS file from which to read modulation data, if expression is not
used.

• time_column — Name of column in filename giving time data for the modulation table.

• amplitude_column — Name of column in filename giving amplitude data for the modula-
tion. Together, time_column and amplitude_column define a function A(t).

• refresh_matrix — Frequently there is a matrix associated with an element even if tracking
through the element does not use the matrix. In this case, elegant doesn’t normally update
the matrix for the element as it modulates the element, since that may involve a significant
time penalty. If this parameter is set to a non-zero value, the matrix will be updated. For
elements that use a matrix for tracking, the matrix is always updated.

• differential, multiplicative — Determine how the amplitude function A(t) is used to
obtain the new value of the parameter. There are four cases

– differential=1, multiplicative=0: v(t) = v0 +A(t) (default).

– differential=0, multiplicative=0: v(t) = A(t).

– differential=1, multiplicative=1: v(t) = v0 + v0A(t).

– differential=0, multiplicative=1: v(t) = v0A(t).

• start_occurence, end_occurence — If nonzero, these give the starting and ending occur-
rence numbers of elements that will be modulated. N.B.: if wildcards are used, occurrence
number counting is for each set of identically-named elements separately, rather than for the
sequence of matched elements.

• s_start, s_end — If non-negative, these give the gaving and ending position limits for the
end-of-element locations of elements to be modulated.

• after — The name of an element. If given, the modulation is applied only to elements that
follow the named element in the beamline.

• before — The name of an element. If given, the modulation is applied only to elements that
precede the named element in the beamline.

• verbose — If nonzero, information is printed to the standard output as changes are made.
Use for debugging only, since otherwise it may slow the simulation.

• verbose_threshold — If nonzero, verbose information is printed only when the fractional
change exceeds the given value.

• record— Gives a possibly incomplete filename to which will be written a record of the values
of the modulation.

• flush_record — Gives the interval in steps at which to flush the record file. Higher values
result in less frequent updates to the record, but may improve performance.

78

moments_output

7.37 moments output

• type: action/setup command.

• function: compute periodic or propagate non-periodic beam moments without tracking, op-
tionally including radiation.

• sequence: must follow run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&moments_output

STRING filename = NULL;

long output_at_each_step = 0;

long output_before_tune_correction = 0;

long final_values_only = 0;

long verbosity = 0;

long matched = 1;

long equilibrium = 1;

long radiation = 1;

long n_slices = 10;

long slice_etilted = 1;

double emit_x = 0;

double beta_x = 0;

double alpha_x = 0;

double eta_x = 0;

double etap_x = 0;

double emit_y = 0;

double beta_y = 0;

double alpha_y = 0;

double eta_y = 0;

double etap_y = 0;

double emit_z = 0;

double beta_z = 0;

double alpha_z = 0;

&end

• filename — The (incomplete) name of a file to which the moments results will be written.
Recommended value: “%s.mom”.

• output_at_each_step—A flag indicating, if set, that computations and/or output is desired
at each step of the simulation. If you wish to compute Twiss parameters on a closed orbit or
after other calculations, be sure to set this control to a nonzero value.

• output_before_tune_correction — A flag indicating, if set, that output is desired both
before and after tune correction.

• final_values_only — A flag indicating, if set, that only the final values of the Twiss pa-
rameters should be output, and not the parameters as a function of s.

79

• verbosity — Larger numbers result in an increasing amount of informational output to the
standard output stream.

• matched — A flag indicating, if set, that the periodic or matched moments should be found.

• equilibrium — A flag indicating, if set, that the equilibrium moments should be found.
If matched=1 and equilibrium=0, then the initial twiss parameters are computed from the
periodic solution for the beamline.

• radiation — A flag indicating, if set, that synchrotron radiation effects should be included.
N.B.: this flag is all that needs to be set if the lattice contains no kick elements. However,
if the lattice contains CSBEND, CSRCSBEND, KQUAD, or KQUAD elements (or other elements with
SYNCH_RAD and ISR parameters), then the SYNCH_RAD andISR must be set to 1 as well.

• n_slices — The number of slices into which to cut individual dipoles, quadrupoles, and
sextuoples for computations. 10 has been found to work for all rings tested, but users are
advised to ensure it is sufficient for their cases.

• emit_x, beta_x, alpha_x, eta_x, etap_x, and related quantities for y and z — If matched=0,
then these specify the starting beam ellipses in all three planes.

This command performs several functions. In the most basic form, it propagates beam moments,
i.e., the 6x6 sigma matrix, from the beginning to the end of a transport line, including coupling
from rotated elements or offset sextupoles. This can be performed with or without synchrotron
radiation effects in dipoles, quadrupoles, and sextupoles. These computations include the evolution
of the trajectory due to errors and (if included) synchrotron radiation.

If desired, the command will instead compute the periodic beam moments. In this case, the user
must include an appropriate rf cavity in the lattice in order to get valid results. (By “appropriate
rf cavity” we mean that it must have the right voltage, frequency, and phase to support stored
beam.) It is also suggested that the user compute the closed orbit using closed_orbit so that the
computations are performed on the closed orbit.

The results of moments computation may be subjected to optimization using values at marker
elements. See the documentation for MARK for more details.

Notes:

• When using CSBEND, KQUAD, and KSEXT elements, one may find that the calculations of
moments_output do not make sense. This is because, by default, synchrotron radiation is
disabled on these elements. To resolve the issue, set ISR=1 and SYNCH_RAD=1 on CSBEND at
a miminum. If a closed orbit is present, making the same setting on the KQUAD and KSEXT is
also suggested. It is essential to do this if there is an rf frequency offset.

• When bending magnets are tilted, elegant has problems computing the moments and closed
orbit self-consistently when the bending radius is small. To address this, the n_slices param-
eter is set to 1 for tilted bending magnets when slice_etilted=0. This reduces the accuracy
of the calculations. Users are strongly advised to check that this is acceptable.

• The program sddsmatchmoments is available to transform a particle distribution so that its
6x6 beam moments match those given in a moments_output output filename. In addition,
the bunched_beam command provides a similar capability for generating a distribution from
computed moments.

80

momentum_aperture

7.38 momentum aperture

• type: major action command.

• function: determine momentum aperture as a function of position in the lattice by tracking

• can use parallel resources (Pelegant)

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&momentum_aperture

STRING output = NULL;

double x_initial = 0;

double y_initial = 0;

double delta_negative_start = 0.0;

double delta_positive_start = 0.0;

double delta_negative_limit = -0.10;

double delta_positive_limit = 0.10;

double delta_step_size = 0.01;

long steps_back = 1;

long splits = 2;

long split_step_divisor = 10;

long skip_elements = 0;

long process_elements = 2147483647;

double s_start = 0;

double s_end = DBL_MAX;

STRING include_name_pattern = NULL;

STRING include_type_pattern = NULL;

long fiducialize = 0;

long verbosity = 1;

long soft_failure = 0;

long output_mode = 0;

long forbid_resonance_crossing = 0;

&end

• output — The (incomplete) name of a file to which the momentum aperture results will be
written. Recommended value: “%s.mmap”. The data are related to the momentum aperture
at the exit of the named elements.

• x_initial, y_initial — The initial x and y coordinate values for tracking. It is essential
that y_initial be nonzero if one wants to see losses due to vertical resonances.

• delta_negative_start, delta_positive_start — Starting values of scans in the negative
and positive directions.

• delta_negative_limit, delta_positive_limit— Limiting values of scans in the negative
and positive directions.

• delta_step_size — Initial size of steps in δ. This should be fairly large in order to save
time.

81

• steps_back— Number of steps to back up after a particle is lost, relative to the last surviving
δ, before continuing with a smaller step size. If this is set to zero, there is a risk of finding a
too-large momentum aperture (a stable island).

• splits—Number of times to split the step size in order to refine the location of the maximum
surviving momentum offsets. When a particle is lost, the algorithm steps back to a momentum
offset where a particle survived, subdivides the step size, and continues searching.

• split_step_divisor — Factor by which to subdivide the step size for each split.

• skip_elements — Number of elements to skip before starting to compute momentum aper-
tures.

• process_elements — Number of elements for which to compute momentum aperture.

• s_start, s_end— Limiting s coordinates of the elements from which tracking will start. The
default values will exclude no elements.

• include_name_pattern — If given, tracking will start only at the entrance to elements that
match the given wildcard pattern.

• include_type_pattern— If given, tracking will start only at the entrance to elements whose
type matches the given wildcard pattern.

• fiducialize — If given, an initially on-energy particle is tracked before the momentum
aperture search begins, in order to fiducialize the reference momentum. This is useful if there
are synchrotron radiation losses or energy gain due to cavities in the system.

• verbosity — Larger values result in more detailed printouts as calculations proceed. Mostly
for debugging.

• soft_failure — Normally, if elegant fails to find the momentum aperture, it aborts. If
soft_failure is non-zero, it instead assigns a momentum aperture equal to the search limit.

• output_mode — Normally, elegant puts the values for positive and negative momentum
aperture in different columns. Each element thus has a single row of data in the output file.
If output_mode=1, elegant instead puts the values for positive and negative apertures in
successive rows, with a reduced number of columns. This is mostly advantageous for the par-
allel version, since it allows using twice as many simultaneous processors. If output_mode=2,
elegant tracks many more probe particles simultaneously, which is better for massively par-
allel systems. The number of particles tracked is the number of elements selected times the
number of probe points between delta_negative_limit and delta_positive_limit.

• forbid_resonance_crossing — Normally, elegant allows the momentum aperture search
to cross integer and half-integer resonances if no unstable particles are found. If this is
undesirable, this flag can be set to 1.

The idea for this command is from M. Belgroune et al., “Refined Tracking Procedure for the
SOLEIL Energy Acceptance Calculation,” Proceedings of PAC 2003, p 896, as implemented for
TRACYII. In particular, the energy aperture as a function of position around the ring is determined
by tracking. Starting at the beginning of the lattice and working downstream, particles are tracked
starting from the exit of each selected element. The betatron coordinates are initially zero (or very

82

small), while the momentum deviation is gradually increased until loss of the particle is observed.
This defines the momentum aperture at that location.

In elegant version 19.0 and later, the algorithm is as follows. For simplicity in wording, we’ll
assume the momentum deviations are positive values, although the method is applied separately
for negative values as well:

1. Start with δ = 0, i.e., zero momentum offset.

2. Track a particle to see if it gets lost. If so, proceed to step 4.

3. Increase δ by step size ∆δ and return to step 2.

4. If no splitting steps remain, proceed to the next step. Otherwise:

(a) Change δ to δs − sb∆δ., where δs is the largest δ for which the particle survived, and sb
is the steps_back parameter.

(b) Divide the step size by split_step_divisor to get a new step size ∆δ.

(c) Set δ = δ +∆δ.

(d) Decrement the “splits remaining” counter by 1.

(e) Continue from step 2.

5. Stop. The momentum aperture is δs

This command can be used for both rings and transport lines. For rings it is most appropriate
to have an rf cavity (i.e., an RFCA element) in the lattice. One should also include radiation loss
using either of two methods:

1. SREFFECTS element, with QEXCITATION=0. To set up this element more easily, one can include
a twiss_output command with radiation_integrals=1.

2. Use CSBEND and KQUAD elements with SYNCH_RAD=1 and ISR=0.

When including radiation loss, one must be certain to set the frequency and phase of the rf cavity
correctly. The rf_setup command can be used for this purpose. It is also a good idea to track for
several synchrotron oscillation periods.

Note for Pelegant: Unlike for elegant, the data in the output file will not be sorted by s.
To sort the data, simply use sddssort from the commandline, e.g.,

sddssort -column=s output.mmap

Also, if it is desirable for the output from Pelegant to have exactly the same form as that from
elegant, then the script reorganizeMmap should be used. This script is provided with elegant

and Pelegant distributions.

83

optimize

7.39 optimize

• type: major action command.

• function: perform optimization.

• sequence: must follow optimization_setup and beam definition (bunched_beam or sdds_beam).

• can use parallel resources (Pelegant) for tracking-based optimization.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• note: on UNIX systems, the user may press Control-C to force elegant to terminate op-
timization and proceed as if optimization had converged. (To genuinely terminate the run
during optimization press Control-C twice.) This is very useful if one wants to get a look at
the partially optimized result. If one uses parameter saving (run_setup) or save_lattice
one can make a new run that starts from the optimized result.

&optimize

long summarize_setup = 0;

&end

• summarize_setup— A flag indicating, if set, that a summary of the optimization parameters
should be printed.

84

optimization_constraint

7.40 optimization constraint

• type: setup command.

• function: define a constraint for optimization.

• sequence: must follow optimization_setup and precede beam definition (bunched_beam or
sdds_beam).

• N.B.: This command is disparaged. It is far better to put constraints into the optimization
equation (via the equation parameter of optimization_setup or via optimization_term).
The reason is that the hard constraints imposed by optimization_constraintmay make it
more difficult for the optimizer to converge. See the discussion of the selt and segt macros
in the manual entry to optimization_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&optimization_constraint

STRING quantity = NULL;

double lower = 0;

double upper = 0;

&end

• quantity — The quantity to be constrained, given as the name of a quantity from among
the optimization variables, optimization covariables, and the “final” parameters (see the en-
try for run_setup for the last of these). The optimization (co)variables are referred to as
<element-name>.<parameter-name>, in all capital letters. Other quantities, such as Twiss
parameters or anything else but what is listed just above, are not recognized. Expressions
involving multiple quantities are not supported.

• lower, upper — The lower and upper limits allowed for the expression.

85

optimization_covariable

7.41 optimization covariable

• type: setup command.

• function: define an element parameter to be varied as a function of optimization parameters.

• sequence: must follow optimization_setup and precede beam definition (bunched_beam or
sdds_beam).

• N.B.: It is not possible to optimize an element if the element name starts with one of the
following characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, or -. The reason is that elegant

will attempt to make an SDDS parameter name containing the element name, and these
characters are disallowed at the beginning of such a name.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&optimization_covariable

STRING name = NULL;

STRING item = NULL;

STRING equation = NULL;

long disable = 0;

&end

• name — The name of the element.

• item — The parameter of the element to be changed.

• equation — An rpn equation for the value of the parameter in terms of the values of any
parameters of any optimization variable. These latter appear in the equation in the form
<element-name>.<parameter-name>, in all capital letters. The original values of all variables
and covariable may be accessed via names like <element-name>.<parameter-name>0.

• disable — If nonzero, the covariable is ignored.

86

optimization_setup

7.42 optimization setup

• type: setup command.

• function: define overall optimization parameters and methods.

• sequence: must precede beam definition (bunched_beam or sdds_beam)

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&optimization_setup

STRING equation = NULL;

STRING mode = "minimize";

STRING method = "simplex";

double tolerance = -0.01;

double target = 0;

long center_on_orbit = 0;

long center_momentum_also = 1;

long soft_failure = 1;

long n_passes = 2;

long n_evaluations = 500;

long n_restarts = 0;

long matrix_order = 1;

STRING log_file = NULL;

STRING term_log_file = NULL;

long output_sparsing_factor = 0;

long balance_terms = 0;

double restart_worst_term_factor = 1;

long restart_worst_terms = 1;

long verbose = 1;

long balance_terms = 0;

double simplex_divisor = 3;

double simplex_pass_range_factor = 1;

long include_simplex_1d_scans = 1;

long start_from_simplex_vertex1 = 0;

long restart_random_numbers = 0;

STRING interrupt_file = "%s.interrupt";

long interrupt_file_check_interval = 0;

&end

• equation — An rpn equation for the optimization function, expressed in terms of any pa-
rameters of any optimization variables, the “final” parameters of the beam (as recorded in the
final output file available in the run_setup namelist), and selected quantities from Twiss
parameter, tune shift with amplitude, closed orbit, beam moments, driving terms, and other
computations. The optimization variables or covariables may appear in the equation in the
form <element-name>.<parameter-name>, all in capital letters. In addition, initial values of
variables and covariables are available in the form <element-name>.<parameter-name>0.

87

Data fromMARK elements with FITPOINT=1 and from beam position monitors with CO FITPOINT=1

may be used via symbols of the form elementName#occurenceNum.parameterName. See the
documentation for the MARK, MONI, HMON, and VMON elements for detailed discussion and listing.

If response matrix calculation is requested, response matrix values are available in variables
with names PlaneR bpmName#occurence corrName#occurence.corrParam, where Plane is H

(horizontal) or V (vertical) and corrParam is the parameter of the corrector used for changing
the orbit (e.g., HKICK or VKICK for a KICKER element).

If cross-plane response matrix calculation is requested, response matrix values are available in
variables with names BpmPlaneCorrPlaneR bpmName#occurence corrName#occurence.corrParam,
where BpmPlane and CorrPlane are H (horizontal) or V (vertical) and corrParam is the pa-
rameter of the corrector used for changing the orbit (e.g., HKICK or VKICK for a KICKER

element).

Many quantities are made available for optimization if twiss_output command is given with
output_at_each_step=1:

– Final Twiss parameters, e.g., betax, alphax, etax. The names are the same as the
column names in the twiss output file.

– Linear acceptances Ax and Ay for the horizontal and vertical planes, respectively.

– Statistics of Twiss parameters in the form <statistic>.<parameter-name>, where
<statistic> is min, max, ave, p99, p98, or p96. p99 is the 99th pencentile value, a
similarly for p98 and p96.

– Tunes and chromaticities via symbols nux, dnux/dp, (and corresponding symbols for y).

– Chromatic derivatives of beta and alpha functions, via symbols dbetax/dp, dbetay/dp,
dalphax/dp, and dalphay/dp.

– First- and second-order momentum compaction factors via symbols alphac and alphac2.

– If radiation integral computation is requested, one may use ex0 and Sdelta0 for the
equilibrium emittance and momentum spread, plus J<plane> and tau<plane> for the
damping partition and damping time, where <plane> is x, y, or delta. One may also
use I1 through I5 for the individual radiation integrals.

– If compute_driving_terms=1, then the quantities h11001, h00111, h20001, h00201,
h10002, h21000, h30000, h10110, h10020, h10200, h22000, h11110, h00220, h31000,
h40000, h20110, h11200, h20020, h20200, h00310, h00400, dnux/dJx, dnux/dJy, and
dnuy/dJy may be used. Table 2 explains the meaning of the terms.

– The coupling integral and emittance ratio due to x-y coupling may be accessed using
the symbols couplingIntegral and emittanceRatio. See section 3.1.4.4 of [19].

– If higher-order chromaticity is requested, then one may use the symbols dnux/dp2,
dnux/dp3, dnuy/dp2, dnuy/dp3, etax2 , etax3, etay2 , etay3, nuxChromLower, nuxChromUpper,
nuyChromLower, and nuyChromUpper.

– If the tune_shift_with_amplitude command was also given and one may use the sym-
bols dnux/dAx, dnux/dAy, dnuy/dAx, dnuy/dAy, dnux/dAx2, dnux/dAy2, dnux/dAxAy,
dnuy/dAx2, dnuy/dAy2, dnuy/dAxAy, nuxTswaLower, nuxTswaUpper, nuyTswaLower,
and nuyTswaUpper.

If the floor_coordinates command was given, one may use X, Z, and theta to refer to the
final values of the floor coordinates.

88

If the sasefel command was given, one may use variables of the form SASE.<property>,
where <property> is one of gainLength, saturationLength, saturationPower, or lightWavelength.

Finally, one may use any of the names from the “final” output file (see run_setup), e.g., Sx
(x beamsize) or eny (y normalized emittance). These refer to tracked properties of the beam.

The equation may be left blank, in which case the user must give one or more optimization_term
commands. These use the same symbols, of course.

There are several rpn functions that are useful in constructing a good optimization equation.
These are “soft-edge” greater-than, less-than, and not-equal functions, which have the names
segt, selt, and sene, respectively. The usage is as follows:

– V1 V2 T segt. Returns a nonzero value if and only if value V1 is greater than V2.
The returned value is ((V1 − V2)/T)

2. Typically used to constraint a quantity from
above. E.g., to limit the maximum horizontal beta function to 10m with a tolerance of
T = 0.1m, one would use max.betax 10 .1 segt.

– V1 V2 T selt. Returns a nonzero value if and only if value V1 is less than value V2.
The returned value is ((V1 − V2)/T)

2. Typically used to constrain a value from below.
E.g., to limit a beta function to greater than 3 m with a tolerance of 0.1 m, one would
use betax 3 .1 selt.

– V1 V2 T sene. Returns a nonzero value if and only if V1 and V2 differ by more than
tol. If V1 > V2, returns ((V1 − (V2 + T))/T)2. If V2 > V1, returns ((V2 − (V1 + T))/T)2.

• mode — May be either “minimize” or “maximize”.

• method — May be one of “simplex”, “grid”, “powell”, “randomwalk”, “randomsample”, or
“sample”. Recommended methods are “simplex” and “randomwalk”. The latter is very useful
when the lattice is unstable or nearly so.

• tolerance— The convergence criterion for the optimization, with a negative value indicating
a fractional criterion.

• target — The value which, if reached, results in immediate termination of the optimization,
whether it has converged or not.

• center_on_orbit — A flag indicating whether to center the beam transverse coordinates on
the closed orbit before tracking.

• center_momentum_also — A flag indicating whether to center the momentum coordinate
also.

• soft_failure — A flag indicating, if set, that failure of an optimization pass should not
result in termination of the optimization.

• n_evaluations—The number of allowed evaluations of the optimization function. If simplex
optimization is used, this is the number of allowed evaluations per pass.

• n_passes — The number of optimization passes made to achieve convergence (“simplex”
only). A pass ends (roughly) when the number of evaluations is completed or the function
doesn’t change within the tolerance. A new pass involves starting the optimization again using
step sizes determined from the range of the simplex and the factor simplex_pass_factor.

89

• n_restarts — The number of complete restarts of the optimization (simplex only). This is
an additional loop around the n_passes loop. The difference is that a restart involves using
the optimized result but the original step sizes. It is highly recommended that this feature
be used if convergence problems are seen.

• restart_worst_term_factor, restart_worst_terms — Often when there are convergence
problems, it is because a few terms are causing difficulty. Convergence can often be obtained
by increasing the weighting of these terms. If restart_worst_term_factor is positive, then
elegant will multiply the weight of the restart_worst_terms largest terms by this factor
at the beginning of a restart.

• matrix_order — Specifies the highest order of matrix elements that should be available for
fitting. Elements up to third order are available for the terminal point of the beamline, and
up to secod order for interior fit points. Names for first-, second-, and third-order elements
are of the form Rij, Tijk, and Uijkl.

• log_file — A file to which progress reports will be written as optimization proceeds. For
SDDS data, use the final output file from the run_setup namelist.

• term_log_file— This names a file to which the values of the optimization terms are written
at the completion of optimization, which can be convenient when large numbers of terms are
used. For example, by using sddssort one could find which terms are contributing most to
the penalty value.

• output_sparsing_factor — If set to a value larger than 0, results in sparsing of output to
the “final” file (see run_setup). This can make a significant difference in the optimization
speed.

• balance_terms— If nonzero, then all terms of the optimization expression have their weights
adjusted so they make equal contributions to the penalty function. This can help prevent
optimization of a single term at the expense of others. It is performed only for the initial
value of the optimization function.

• simplex_divisor — The factor by which simplex step sizes are changed as the optimization
algorithm searches for a valid initial simplex.

• simplex_pass_range_factor— When starting a new pass, the simplex optimizer takes the
range over the previous simplex of each variable times this factor as the starting step size for
that variable. This can be useful if the optimization brings the system close to an instability.
In such a case, the simplex routine may have trouble constructing an initial simplex if the
range of the variables is large. Setting this control to a value less than 1 may help.

• include_simplex_1d_scans — If nonzero, optimizer performs single-variable scans prior to
starting simplex optimization. This is usually a good idea, but in some cases it will cause
problems. For example, if your design is on the edge of being unstable, you may get some
many errors from the initial steps that the single-variable optimizer can’t continue. Disabling
the single-variable scans will sometimes solve this.

• start_from_simplex_vertex1— If nonzero, optimizer uses the initial simplex vertex as the
starting point for each new 1d scan. Otherwise, it uses the result of the previous scan.

90

• restart_random_numbers— If nonzero, the random number generators used by elegant are
reset for each evaluation of the optimization function. This is valuable if one is optimizing
tracking results that involve random processes (e.g., ISR or scattering).

• interrupt_file— Gives the name of a file that will be monitored by the program as it runs.
If the file is created or modified while optimization is running, the optimizer will complete
the present step and cleanly terminate, allowing subsequent commands, if any, to proceed.

• interrupt_file_check_interval — If nonzero, then gives the interval in function evalua-
tions between checks of the interrupt file. If zero, the interrupt file is only checked at the
end of a simplex pass. N.B.: Depending on the responsiveness of the file system and the
time required for a function evaluation, setting this to a small value could have a significant
adverse impact on the run time.

91

parallel_optimization_setup

7.43 parallel optimization setup

• type: setup command (for Pelegant only).

• function: define overall parallel optimization parameters and methods.

• N.B.: In addition to the optimization parameters used in the optimization setup command,
several new parameters are added for parallel optimization. User should replace optimiza-
tion setup with parallel optimization setup and append necessary parameters.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

¶llel_optimization_setup

STRING method = "simplex";

double hybrid_simplex_tolerance = -0.01;

double hybrid_simplex_tolerance_count = 2;

long hybrid_simplex_comparison_interval = 0;

double random_factor = 1

long n_iterations = 10000;

long max_no_change = 10000;

long population_size = 100;

STRING population_log = NULL;

long print_all_individuals = 0;

long output_sparsing_factor = 1;

STRING crossover = "twopoint";

STRING simplex_log = NULL;

long simplex_log_interval = 1;

&end

• method — May be one of “genetic”, “hybridsimplex” or “swarm”. If the default “simplex”
method is chosen, all the processors will do the same optimization as the serial version if
there is only one particle for optimization tracking, or do optimization tracking in parallel if
the number of particles is larger than the number of CPUs. All algorithms can be used for
global optimization. “swarm” is recommended when there is sufficient computation resource
available, so it can reach the optimization target fast. “hybridsimplex” is recommended when
the initial point is close to the optimal result. “genetic” can be chosen for a global optimizer
with a random start point (0 should be avoided for any initial coordinate).

• random_factor — The factor to scale the step size for both parallel swarm and genetic
methods.

• n_restarts — For the parallel “hybridsimplex” method, this number should be set larger
than 1, so the the best result across all processors can be used for the next restart. The
parameter is not used for the swarm method.

• hybrid_simplex_tolerance , hybrid_simplex_tolerance_count — For the parallel “hy-
bridsimplex” method, these set, respectively, the tolerance value for changes between full it-
erations (restarts). If the result does not improve by more than hybrid_simplex_tolerance

after hybrid_simplex_tolerance_count iterations, the optimization terminates.

92

• hybrid_simplex_comparison_interval — For the parallel “hybridsimplex” method, sets
the interval between comparisons of progress among the several optimizations, in units of
function evaluations. Once any of the optimizations is below the target value, all optimiza-
tions are sent an abort command. Ignored if zero or negative, in which case all optimizations
run to completion. Depending on the time required to perform a single function evalua-
tion, setting this to a small value may increase the required run time due to the overhead of
frequency interprocessor communication.

• simplex_log — For the parallel “hybridsimplex” method, rootname for files to which data
from each simplex optimization will be written. Intended only for debugging as it will ad-
versely impact performance.

• simplex_log_interval — Interval at which simplex_log files will be updated.

• n_iterations — The maximal number of generations/iterations for the parallel genetic and
particle swarm optimization.

• population_size— The number of individuals to be generated for each generation/iteration
for the swarm and genetic method. For the hybridsimplex method, the number of individuals
is equal to the number of processors used.

• max_no_change — The maximal number of generations in which no change in the best eval-
uation is allowed before the genetic method stops (genetic method only).

• n_evaluations — This is not used as a stop condition in the genetic optimization. The
n iterations or max no change can be used instead. For the hybridsimplex method, this is
the number of allowed evaluations per restart.

• population_log— An SDDS file to which the best individual in a population can be written
after each iteration as optimization proceeds. Recommended value: “%s.pop”. For the paral-
lel genetic method, user can choose to print out all the individuals (See print all individuals).

• print_all_individuals— If nonzero, all the strings in a population will be recorded in the
population log file. This is supported for the genetic method only.

• output_sparsing_factor — For genetic optimization, this is used to set the frequency of
printing strings in the log file with the number of generations as the interval.

• crossover — For genetic optimization, it allows the user to choose a crossover type from
“onepoint”, “twopoint” and “uniform”. “twopoint” is the default crossover type. If the
dimension is 2, it will be set to onepoint crossover.

Note:

• Genetic optimization in Pelegant terminates when at least one of the stopping rules specified
has been met. The two stopping rules are:

– generation limit (n iterations) exceeded

– no change in the best solution found in a given number of generations. The default
is to stop when the generation limit (10000 is the default value) is reached. While the
max no change is more favorite to use, as it will stop until the result can not be improved
after a certain number of iterations (10000 is the default value). The n iterations can be
set to a very large number to use this rule as the stop condition alone.

93

• step size control – The mutation step size in the genetic optimization is selected from a Gaus-
sian distribution with mean 0 and standard deviation step size, where step size is provided by
user. All the dimensions will use the same standard deviation for an iteration. The step size
of the first dimension provided by user will be used as the original step size for all the dimen-
sions. The step size will be reduced by the golden ratio (1.618) if the best value is unchanged
after every 3000 iterations. After every 3000 iterations since the last time the step size is
reduced, the step size will be increased by the golden ratio.

• As the genetic optimization implementation in Pelegant internally updates individuals with
a relative change of the current value for a variable, 0 should be avoided to use as an initial
value.

94

optimization_term

7.44 optimization term

• type: setup command.

• function: define optimization equation via individual terms

• sequence: must follow optimization_setup and precede beam definition (bunched_beam or
sdds_beam).

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&optimization_term

STRING term = NULL;

double weight = 1.0;

STRING field_string = NULL;

long field_initial_value = 0;

long field_final_value = 0;

long field_interval = 1;

STRING input_file = NULL;

STRING input_column = NULL;

long verbose = 0;

&end

• term—An rpn expression giving one term to be optimized. If more than one optimization_term
command is given, then the terms are added. The advantage of using this command over
giving an equation via optimization_setup is that elegant will report the value of each
term as it performs the optimization (if a log_file is given to optimization_setup). This
permits determination of which terms are causing problems for the optimization.

Please see the entry for equation under optimization setup for details on designing opti-
mization terms.

• weight — The weight to assign to this term. If zero, the term is ignored.

• field_string, field_initial_value, field_final_value, field_interval — These pa-
rameters are used to perform substitution of a series of values into the string given by term.
This can be used to make an identical constraint at a number of instances of the same marker.
For example, to constraint Cx to zero at instances 1, 3, 5, ..., 39, of marker M1, one could use

&optimization_term

term = "M1#@.Cx sqr",

field_string = @,

field_initial_value = 1, field_final_value = 39, field_interval = 2

&end

• input_file, input_column — If given, input_file is taken as the name of an SDDS file,
which is expected to have a string column named by input_column. Each row of the column
is taken as a separate optimization term.

• verbose — If nonzero, optimization terms are echoed to the terminal as they are created or
read from the input file.

95

optimization_variable

7.45 optimization variable

• type: setup command.

• function: defines a parameter of an element to be used in optimization.

• sequence: must follow optimization_setup and precede beam definition (bunched_beam or
sdds_beam).

• N.B.: It is not possible to optimize an element if the element name starts with one of the
following characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, or -. The reason is that elegant

will attempt to make an SDDS parameter name containing the element name, and these
characters are disallowed at the beginning of such a name.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&optimization_variable

STRING name = NULL;

STRING item = NULL;

double lower_limit = 0;

double upper_limit = 0;

long differential_limits = 0;

double step_size = 1;

long disable = 0;

long force_inside = 0;

long no_element = 0;

double initial_value = 0;

&end

• name — The name of the element.

• item — The parameter of the element to be varied.

• lower_limit, upper_limit— The lower and upper limits allowed for the parameter. If these
are equal, the range of the parameter is unlimited.

• differential_limits— If nonzero, then the lower and upper limits are being given relative
to the initial value, rather than in absolute terms.

• step_size— The initial step size (“simplex” optimization) or the grid size in this dimension
(“grid” or “sample” optimization).

• disable — If nonzero, the variable is ignored.

• force_inside — If nonzero, the initial value is forced inside the allowed range defined by
the lower_limit and upper_limit parameters.

• no_element, initial_value— Allows defining a variable that is not connected to a beamline
element, and giving the initial value for the variable. The variable can them be used in other
optimization-related commands, e.g., optimization_covariable.

96

print_dictionary

7.46 print dictionary

• type: action command.

• function: print dictionary of supported accelerator elements.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&print_dictionary

STRING filename = NULL;

long SDDS_form = 0;

&end

• filename — The name of a file to which the dictionary will be written. By default, the
output is in LATEXformat.

• SDDS_form — If non-zero, then the output is in SDDS format.

97

ramp_elements

7.47 ramp elements

• type: setup command.

• function: define parameters for time-dependent ramping of elements

• sequence: must follow run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&ramp_elements

STRING name = NULL;

STRING item = NULL;

STRING type = NULL;

long start_pass = 0;

long end_pass = LONG_MAX;

double start_value = 0;

double end_value = 0;

long differential = 1;

long multiplicative = 0;

long start_occurence = 0;

long end_occurence = 0;

double exponent = 1;

double s_start = -1;

double s_end = -1;

STRING before = NULL;

STRING after = NULL;

long verbose = 0;

STRING record = NULL;

&end

N.B.: This command will produce unpredictable results when used with error_element, alter_elements,
modulate_elements, and load_parameters (except when change_defined_values=1). It should
work properly with link_elements in turn-by-turn mode when the source element is ramped, but
not when the target element is ramped.

• name — A possibly-wildcard-containing string giving the names of the elements to modulate.
If not specified, then one must specify type.

• item — The name of the parameter to modulate.

• type — A possibly-wildcard-containing string giving the names of element types to modulate.
May be specified with name or by itself.

• start_pass, end_pass — The starting and ending pass, istart and iend for the ramp. For
passes less than start_pass, the ramp value is start_value. For passes greater than
end_pass, the ramp value is end_value.

• start_value, end_value — The end-point values S (start) and E (end) of the ramp.

98

• exponent — The exponent p for the variation of values between the start and end of the
ramp. The ramp function R(i) is

R(i) = S + (E − S) ∗
(

i− istart
iend − istart

)p

. (6)

Note that i = 0 on the first pass.

• differential, multiplicative — Determine how the amplitude function A(t) is used to
obtain the new value of the parameter. There are four cases

– differential=1, multiplicative=0: v(t) = v0 +R(i) (default).

– differential=0, multiplicative=0: v(t) = R(i).

– differential=1, multiplicative=1: v(t) = v0 + v0R(i).

– differential=0, multiplicative=1: v(t) = v0R(i).

• start_occurence, end_occurence — If nonzero, these give the starting and ending occur-
rence numbers of elements that will be modulated. N.B.: if wildcards are used, occurrence
number counting is for each set of identically-named elements separately, rather than for the
sequence of matched elements.

• s_start, s_end — If non-negative, these give the gaving and ending position limits for the
end-of-element locations of elements to be modulated.

• after — The name of an element. If given, the modulation is applied only to elements that
follow the named element in the beamline.

• before — The name of an element. If given, the modulation is applied only to elements that
precede the named element in the beamline.

• verbose — If nonzero, information is printed to the standard output as changes are made.
Use for debugging only, since otherwise it may slow the simulation.

• record— Gives a possibly incomplete filename to which will be written a record of the values
of the ramp.

99

rf_setup

7.48 rf setup

• type: setup/action command.

• function: set up rf cavity frequency, phase, and voltage for a storage ring

• sequence: must follow run_setup. In action mode, must follow action-mode instance of
twiss_output.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&rf_setup

STRING filename = NULL;

STRING name = NULL;

long start_occurence = -1;

long end_occurence = -1;

double s_start = -1;

double s_end = -1;

long set_for_each_step = 0;

double near_frequency = 0;

long harmonic = -1;

double bucket_half_height = 0;

double over_voltage = 0;

double total_voltage = 0;

long disable = 0;

long output_only = 0;

long track_for_frequency = 0;

&end

This command must follow a twiss_output command that includes radiation integral compu-
tation, since the energy loss per turn is needed to set up the rf cavities. Note that the command
includes features to allow selecting a subset of the RFCA elements in the beamline. The selected
subset is assumed to include all of the cavities that will impart net energy to the beam.

This command stores values for bunch length in symbols Sz0 and St0, and also stores the
fractional energy spread in Sdelta0, where they can be used in rpn expressions in subsequent
commands, e.g.,

&bunched_beam

sigma_dp = "(Sdelta0)",

sigma_s = "(Sz0)",

...

&end

• filename — Name of a file to which data related to the rf settings will be written.

• name — A possibly-wildcard-containing string giving the names of the elements to set. If not
given, all RFCA elements are selected.

100

• start_occurence, end_occurence — If nonzero, these give the starting and ending occur-
rence numbers of elements that will be set.

• s_start, s_end — If non-negative, these give the gaving and ending position limits for the
end-of-element locations of elements to be set.

• set_for_each_step— If nonzero, then the setup is repeated at each simulation step. In this
case, one must also give output_at_each_step=1 for twiss_output.

• near_frequency – If nonzero, then the rf frequency is chosen to be the closest harmonic to
the given frequency.

• harmonic — If nonzero, then the rf frequency is set to the given harmonic of the revolution
frequency.

• bucket_half_height— If nonzero, the voltage is computed so as to give the specified bucket
half height.

(

∆p

p

)

bucket

=

√

U0

παhE

√

F (q), (7)

where U0 is the energy loss per turn, α is the momentum compaction factor, h is the harmonic,
E is the beam energy,

F (q) = 2

(

√

q2 − 1− arccos
1

q

)

, (8)

and q is the overvoltage factor, related to the rf voltage by q = V/U0. (See Wiedemann, Vol.
1, 8.2.2.)

• over_voltage — If nonzero, the voltage is set to the given factor relative to the energy loss
per turn.

• total_voltage — If nonzero, the total rf voltage is set to the given value. The frequency
and phase are computed for this voltage.

• disable — If nonzero, command does nothing.

• output_only — If nonzero, command generates output file but does not change rf cavity
settings.

• track_for_frequency — If nonzero, particle tracking is used to determine the rf frequency.
If zero, the ideal length of the lattice is used.

101

replace_elements

7.49 replace elements

• type: action command.

• function: Replace old element with a newly defined element, or just remove it from beamline.
This is a convenient way to modify lattice in an elegant run. See also transmute_elements.

• sequence: must follow run_setup.

• notes: The modified lattice can be saved through save_lattice command. Be sure to use
“output seq = 1” option in that command.

• warning: The element’s occurrence is re-calculated after each usage of this command. If you
need to repeat this command for SAME named element several times, you have to re-calculate
it occurrence every time. For example, you want to remove Q1 at occurrence position (1,3,5),
and use ‘replace elements” twice. If in the first command you use “occurence[0]=1,3”, then
in the second command you have to use “occurence[0]=3”, since after remove of (1,3) Q1s,
the 5th Q1 now becoming 3rd Q1.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&replace_elements

STRING name = NULL;

STRING type = NULL;

STRING exclude = NULL;

long skip = 1;

long disable = 0;

STRING element_def = NULL;

long total_occurrences = 0;

long occurrence[100]={0};

&end

• name — Possibly wild-card containing string specifying the name of the elements to be re-
moved or replaced.

• type— Possibly wild-card containing string specifying the type of the elements to be removed
or replaced.

• exclude — Possibly wild-card containing string specifying the name of elements to be ex-
cluded from this command.

• skip — The element is removed or replaced at every nth specified location.

• disable — If nonzero, the command is ignored.

• element_def — If NULL, the specified elements are removed from the beamline. If not
NULL, the specified elements are replaced with the new element defined here. The definition
of the element should be just as it would be entered in the lattice file.

102

• total_occurrences, occurrence— These parameters are used to replace or delete specified
occurrences of the element name. total_occurrences specifies how many elements to replace
or delete up to a maximum of 100, while the entries in the array occurrence specify the
occurrences to replace or delete. If total_occurrences is non-zero, then skip must be set
to zero and the name must be the exact name (no wild-card matching).

103

rpn_expression

7.50 rpn expression

• type: action/setup command.

• function: pass an expression directly to the rpn submodule for execution.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&rpn_expression

STRING expression = NULL;

&end

• expression — An rpn expression. This expression is executed immediately and can be used,
for example, to read in rpn commands from a file or store values in rpn memories.

104

rpn_load

7.51 rpn load

• type: action/setup command.

• function: load data from SDDS file into RPN variables.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&rpn_load

STRING tag = NULL;

STRING filename = NULL;

STRING match_column = NULL;

STRING match_column_value = NULL;

long matching_row_number = -1;

STRING match_parameter = NULL;

STRING match_parameter_value = NULL;

long use_row = -1;

long use_page = -1;

long load_parameters = 0;

&end

This command is used to facilitate multi-stage optimization runs by allowing convenient loading
of data from SDDS files into RPN variables. For example, one may match the final Twiss parameters
of a lattice to the parameters stored in an SDDS file from a different run.

• tag — Option string that will be pre-pended to the names of all the numerical columns in the
file in order to create RPN variable names. E.g., if the input file was from the twiss_output
command and tag = tw1 was given, then RPN variables tw1.betax, tw1.alphax, etc. would
be used. N.B.: If the tag is blank, then nothing is appended to the names from the file. This
can be dangerous since the names may conflict with the names of other variables!

• filename — The (incomplete) name of the SDDS file from which to read data. By default,
data is taken from all columns from the last row of the last page of the file. This default
behavior can be altered using one or more of the following parameters:

– match_column — The name of a string column to use in selecting the row from which
data will be taken.

– match_column_value— The value that the column named by match_columnmust have
to be selected from the file. By default, the last row with a matching value is used.

– matching_row_number— If a nonnegative value is given, then the matching_row_numberth

matching row is selected (0 is the first row, 1 the second, etc). Otherwise, the last match
row is used. Ignored if match_column is not given.

– match_parameter — The name of a string parameter to use in selecting the page from
which data will be taken.

– match_parameter_value— The value that the parameter named by match_parameter

must have to be selected from the file. By default, the last page with a matching value
is used.

105

– use_row — If nonnegative, specifies the row number to use, starting at 0 for the first
row. Ignored if match_column is given.

– use_page — If nonnegative, specifies the page number to use, starting at 1 for the first
page. Takes precedence over \match_parameter if both are given.

– load_parameters— If nonzero, specifies loading the SDDS parameter data rather than
the column data.

106

run_control

7.52 run control

• type: setup command.

• function: set up the number of simulation steps and passes.

• sequence: must follow run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&run_control

long n_steps = 1;

double bunch_frequency = 0;

long n_indices = 0;

long n_passes = 1;

long n_passes_fiducial = 0;

long reset_rf_for_each_step = 1;

long first_is_fiducial = 0;

long restrict_fiducialization = 0;

&end

• n_steps — The number of separate repetitions of the action implied by the next action
command. If random errors are defined, this is also the number of separate error ensembles.

• bunch_frequency — The frequency to use in calculating the time delay between repetitions.

• n_indices — The number of looping indices for which to expect definitions in subsequent
vary_element commands. If nonzero, then n_steps is ignored.

• n_passes — The number of passes to make through the beamline per repetition.

• n_passes_fiducial — The number of passes to make through the beamline per repetition
for the fiducial beam. If non-positive, use n_passes. For ring tracking, should probably
always be set to 1.

• reset_rf_for_each_step — If nonzero, the rf phases are established anew for each bunch
tracked. Should be zero to simulate phase and timing jitter.

• first_is_fiducial — If nonzero, the first bunch seen is taken to establish the reference
phases and momentum profile. If zero, each bunch is treated as a new fiducializing bunch.

• restrict_fiducialization — If nonzero, then momentum profile fiducialization occurs
only after elements that are intended change the momentum, such as rf cavities. If zero,
then each element is fiducialized to the average momentum of the beam. Active only if
first_is_fiducial=1 and overrides the always_change_p0 setting in run_setup.

107

run_setup

7.53 run setup

• type: setup command.

• function: set global parameters of the simulation and define primary input and output files.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&run_setup

STRING lattice = NULL;

STRING use_beamline = NULL;

STRING rootname = NULL;

STRING output = NULL;

STRING centroid = NULL;

STRING sigma = NULL;

STRING final = NULL;

STRING acceptance = NULL;

STRING losses = NULL;

STRING magnets = NULL;

STRING semaphore_file = NULL;

STRING parameters = NULL;

long combine_bunch_statistics = 0;

long wrap_around = 1;

long final_pass = 0;

long default_order = 2;

long concat_order = 0;

long print_statistics = 0;

long show_element_timing = 0;

long monitor_memory_usage = 0;

long random_number_seed = 987654321;

long correction_iterations = 1;

double p_central = 0.0;

double p_central_mev = 0.0;

long always_change_p0 = 0;

STRING expand_for = NULL;

long tracking_updates = 1;

long echo_lattice = 0;

STRING search_path = NULL;

long element_divisions = 0;

long load_balancing_on = 0;

long back_tracking = 0;

&end

• lattice — Name of the lattice definition file.

• echo_lattice — If nonzero, the lattice input is echoed to the standard output as the lattice
is parsed. This can help detect certain problems with the lattice that cause elegant to crash.

108

• use_beamline — Name of the beamline to use.

• rootname — Filename fragment used in forming complete names from incomplete filenames.
By default, the filename minus extension of the input file is used.

• output — The (incomplete) name of an SDDS file into which final phase-space coordinates
will be written. Recommended value: “%s.out”.

• centroid — The (incomplete) name of an SDDS file into which beam centroids as a function
of s will be written. Recommended value: “%s.cen”.

• sigma — The (incomplete) name of an SDDS file into which the beam sigma matrix as a
function of z will be written. Recommended value: “%s.sig”. N.B.: confusion sometimes
occurs about some of the quantities related to the s coordinate in this file. Please see Section
4 above.

• final — The (incomplete) name of an SDDS file into which final beam and transport pa-
rameters will be written. Recommended value: “%s.fin”. N.B.: confusion sometimes occurs
about some of the quantities related to the s coordinate in this file. Please see Section 4
above.

• acceptance — The (incomplete) name of an SDDS file into which the initial coordinates of
transmitted particles will be written. Recommended value: “%s.acc”.

• losses — The (incomplete) name of an SDDS file into which information on lost particles
will be written. Recommended value: “%s.lost”.

• magnets— The (incomplete) name of an SDDS file into which a magnet layout representation
will be written. Recommended value: “%s.mag”.

• semaphore_file — The (incomplete) name of file that will be created just before exit from
the program, but only if no errors occured. If the file exists, it is deleted. This file can be
used to record the fact that the run completed without error.

• parameters — The (incomplete) name of an SDDS file into which parameters of accelerator
elements are written. N.B.: this file does not contain any non-numerical parameters of the
lattice. Hence, it is not a complete description of the settings of the lattice.

• combine_bunch_statistics— A flag indicating whether to combine statistical information
for all simulation steps. If non-zero, then the sigma and centroid data will be combined
over all simulation steps.

• wrap_around — A flag indicating whether the s coordinate should wrap-around or increase
monotonically in multipass simulations. If zero, then the centroid and sigma data is computed
for each turn with the s coordinate increasing continuously.

• final_pass — A flag indicating whether the centroid and sigma output should be computed
only from the data from the final pass. By default, the statistics include data from all passes.

• default_order — The default order of transfer matrices used for elements having matrices.

• concat_order — If non-zero, the order of matrix concatenation used.

109

• print_statistics — A flag indicating whether to print information as each element is
tracked. If greater than 0, information is printed after each element from the beginning of
tracking. If equal to n with n < 0, information is printed only after pass |n|.

• show_element_timing — A flag indicating whether to collect and report execution time
statistics binned by element type.

• monitor_memory_usage— A flag indicating whether to monitor memory usage during track-
ing to detect memory leaks.

• random_number_seed — A seed for the random number generators. If zero, a seed will be
generated from the system clock.

• correction_iterations — Number of iterations of tune and chromaticity correction.

• p_central — Central momentum of the beamline, about which expansions are done. This is
βγ.

• p_central_mev — Central momentum of the beamline in MeV/c, about which expansions
are done. Ignored if p_central is nonzero.

• always_change_p0 — If nonzero, then elegant will match the reference momentum to the
beam momentum after each element. For example, in a beamline with radiation losses, one
might want to adjust downstream magnets to match the energy of the incoming beam.

• expand_for — Name of an SDDS file containing particle information, from which the central
momentum will be set. The file contents are the same as required for elegant input with the
sdds_beam namelist.

• tracking_updates — A flag indicating whether to print summary information about track-
ing.

• search_path — Specify a list of pathnames in which to look for input files, including lat-
tice files, wakefield input, particle input, etc. This allows storing common input files in a
convenient location without having to put the location into every filename.

• element_divisions— Specify how many pieces to split elements into. Only certain elements
(basically, those with a matrix) are split. Results in creation of element_divisions new
elements having the same name as each split element.

• load_balancing_on — If 1, load-balancing is performed for parallel mode. This can result
in non-deterministic results if the load-balancing is different on two otherwise identical runs.
Load-balancing variations may occur in heterogeneous clusters, clusters with multiple users,
or for other reasons. In such situations, turning off load balancing can be useful if, for example,
one is performing parameter scans and wishes to eliminate spurious sources of variation. If
-1, then the load balance is checked and reported, but no rebalancing takes place.

• back_tracking — If nonzero, then back-tracking is performed. The beamline is reversed
in order and the beam is propagated backwards through the elements. Only a selection of
elements are supported at present, including CHARGE, CSBEND, DRIF, EDRIFT, EHCOR, EHVCOR,
EVCOR, HMON, KOCT, KQUAD, KSEXT, MARK, MONI, QUAD, RFCA, SBEN, SEXT, TRWAKE, UKICKMAP,
VMON, WAKE, and WATCH.

110

sasefel

7.54 sasefel

• type: setup/action command.

• function: set parameters for computation of SASE FEL gain and other properties.

• sequence: must follow run_setup and precede beam definition (bunched_beam or sdds_beam).

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&sasefel

STRING output = NULL;

STRING model = "Ming Xie";

double beta = 0;

double undulator_K = 3.1;

double undulator_period = 0.033;

double slice_fraction = 0.0;

long n_slices = 0;

&end

• output — The (incomplete) filename of an SDDS file to which output will be written.

• model — The name of the FEL model used. At present, only one model is supported; the
“Ming-Xie” model is based on the simple parametrization M. Xie[13].

• beta — The value of the beta function, in meters.

• undulator_K — The K parameter of the undulator.

• undulator_period — The undulator period, in meters.

• slice_fraction, n_slices—The fraction of beam beam contained by each analysis slice and
the number of such slices. By default, no slice analysis is done. Instead, the beam is analyzed
only as a whole. If slice_fraction*n_slices is less than 1, then the slice analysis is centered
on the median of the time distribution. E.g., if n_slices=1 and slice_fraction=0.1, then
the central 10% of the beam would be analyzed. More typically, one gives values such that
slice_fraction*n_slices is equal to 1, so that every part of the beam is analyzed. There
are separate values in the output file for each slice, plus the whole-beam and slice-averaged
results.

111

save_lattice

7.55 save lattice

• type: action command.

• function: save the current accelerator element and beamline definitions.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&save_lattice

STRING filename = NULL;

long output_seq = 0;

&end

• filename — The (incomplete) name of a file to which the element and beamline definitions
will be written. Recommended value: “%s.new”.

• output_seq — If non-zero, the lattice will be saved as a single beamline sequence. Elements
used for the beamline are re-arranged according to their type. Note: sub-beamline definitions
in the original lattice file will be destroyed from the output file. This feature is intended to
be used together with insert_elements and replace_elements.

112

sdds_beam

7.56 sdds beam

• type: setup command.

• function: set up for tracking and histogram analyzing of particle coordinates stored in an
SDDS file.

• sequence: must follow run_control.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&sdds_beam

STRING input = NULL;

STRING input_list = NULL;

STRING input_type = "elegant";

long n_particles_per_ring = 0;

STRING selection_parameter = NULL;

STRING selection_string = NULL;

long one_random_bunch = 0;

long reuse_bunch = 0;

long prebunched = -1;

long track_pages_separately = 0;

long use_bunched_mode = 0;

long fiducialization_bunch = 0;

long sample_interval = 1;

long n_tables_to_skip = 0;

long center_transversely = 0;

long center_arrival_time = 0;

double sample_fraction = 1;

double p_lower = 0.0;

double p_upper = 0.0;

long save_initial_coordinates = 1;

long reverse_t_sign = 0;

long n_duplicates = 0;

double duplicate_stagger[6] = {0, 0, 0, 0, 0, 0};

&end

• input — Name of an SDDS file containing coordinates of input particles.

• input_type — May be “elegant” or “spiffe”, indicating the name of the program that wrote
the input file. The expected data quantities for the different types are:

– elegant: (x, xp, y, yp, t,p), where x and y are in meters, xp = x′ and xp = y′ are dimen-
sionless, t is in seconds, and p = fifl is the dimensionless momentum. If this file is to be
generated by the user, the expected units string in the column definitions should be “m”,
“s”, and “mbenc” for meters, seconds and the dimensionless momentum, respectively.
The particleID column may also be given; it should contain a positive integer that is
unique for each particle.

113

– spiffe: (r, z,pr,pz,pphi, t), where r and z are in meters, pr = firfl, pz = fizfl, pŒ = !rfl/c,
and t is in seconds. If this file is to be generated by the user use the units strings described
above.

• n_particles_per_ring — For spiffe data, gives the number of particles to generate for
each ring of charge.

• selection_parameter— The name of a parameter in the SDDS file to be used for selection
of pages of data.

• selection_string — The value of the selection_parameter selection parameter required
for a page to be used. E.g., if one has a file from the shower program containing positrons,
electrons, and photons, one might want to select only the positrons.

• one_random_bunch— A flag indicating whether, for spiffe data, a new random distribution
should be calculated for each step of the simulation.

• reuse_bunch— A flag indicating whether to use the bunch again or not. If set, then the first
bunch in the file is used repeatedly for as many tracking steps as requested. Otherwise, each
bunch is used only once and the number of steps is limited to the number of bunches (e.g.,
the number of pages in the file when prebunched=0).

• prebunched — Deprecated. Use track_pages_separately instead.

• track_pages_separately — If non-zero, then separate pages of the input file are tracked
separately. Otherwise, the entire file is tracked together.

• use_bunched_mode — If non-zero, then the IDSlotsPerBunch parameter is used to deter-
mine the bunch assignment of particles in the beam based on values in the particleID

column. In particular, the bunch number is ⌊(I − 1)/S⌋, where I is the particle ID and
S=IDSlotsPerBunch.

• fiducialization_bunch— If non-negative, then rf cavities (e.g., RFCA, RFDF, RAMPRF)
are phased to the indicated bunch (0 is the first bunch). Otherwise, rf cavities are phased to
the entire beam (which is probably not what is wanted).

• sample_interval — If non-zero, only every sample_intervalth particle is used.

• n_tables_to_skip — Number of SDDS pages to skip at the beginning of the file.

• center_transversely — If non-zero, the transverse centroids of the distribution are made
to be zero.

• center_arrival_time — If non-zero, the mean arrival time of particles at the start of the
accelerator is set to zero.

• sample_fraction — If non-unity, the randomly selected fraction of the distribution to use.

• p_lower, p_upper — If different, the lower and upper limit on fifl of particles to use.

• save_initial_coordinates — A flag that, if set, results in saving initial coordinates of
tracked particles in memory. This is the default behavior. If unset, the initial coordinates are
not saved, but are reread from disk each time they are needed. This is more memory efficient
and is useful for tracking very large numbers of particles.

114

• n_duplicates — This specifies duplicating the particles from the input file to allow tracking
more particles. n_duplicates specifies the number of duplications, where the default value of
0 indicates no duplication. If n-fold duplication is invoked, the particle ID of a new particle is
equal to the particle ID of its parent particle plus iNp, where i = 1, ..., n+1 is the duplication
index and Np is the number of particles in the parent bunch. This should be kept in mind
when using the particle ID to segregate the beam into bunches.

• duplicate_stagger — Specifies offsetting of the coordinates x, x′, y, y′, t, and δ for each
duplication by the specified amounts. One assumes that some stochastic process such as
synchrotron radiation will cause further differentiation of duplicate particles. One can also
use SCATTER or DSCATTER elements in the beamline for this purpose.

115

semaphores

7.57 semaphores

• type: setup command.

• function: set up names for semaphore files, which are used to mark the start and end of
program execution.

• sequence: must precede run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&semaphores

STRING started = ‘‘%s.started’’;

STRING done = ‘‘%s.done’’;

STRING failed = ‘‘%s.failed’’;

&end

• started — Gives the (incomplete) filename of a file to create when a valid run setup com-
mand is given.

• done — Gives the (incomplete) filename of a file to create when the program exits without
error. If the file exists, it is deleted when a valid run setup command is given.

• failed — Gives the (incomplete) filename of a file to create when the program exits with an
error. If the file exists, it is deleted when a valid run setup command is given.

116

set_reference_particle_output

7.58 set reference particle output

• type: setup command.

• function: Allows defining a reference set of particle coordinates to which tracked coordinates
will be compared for purposes of optimization.

• sequence: must follow optimization_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• Usage notes: The purpose of this command is to allow optimization of a transport system to
produce the same particle distribution as was obtained by tracking through some other system.
For example, one might track a collection of particles through a CWIGGLER or BGGEXP element,
then attempt to match the output particles with a different element or set of elements that
offer faster tracking. In this case, the optimization run must use the same input distribution
as the run that is being matched.

&set_reference_particle_output

STRING match_to = NULL;

double weight[6] = {1, 1, 1, 1, 0, 1};

STRING comparison_mode = NULL;

&end

• match_to — Name of an SDDS file from which a particle distribution will be read. The coor-
dinates of this distribution will be compared to those from tracking to compute a contribution
to the optimization penalty function.

• weight — Weight to be assigned to each plane. By default, path-length coordinates are not
compared.

• comparison_mode — May be one of “max-ad”, “sum-ad”, and “sum-sqr”, corresponding to
maximum absolute deviation, sum of absolute deviations, and sum of squared deviations.
The default is maximum absolute deviation.

117

slice_analysis

7.59 slice analysis

• type: setup command.

• function: set parameters for slice analysis of the beam along a beamline. Also, results in
placing the final slice analysis (at the end of the beamline) in symbols for use in optimization
equations. The names of the symbols are the same as the names of the columns in the output
file.

• sequence: must follow run_setup and precede beam definition (bunched_beam or sdds_beam).

• N.B.: slice analysis uses an approximate computation of the normalized emittance, regardless
of the setting of the exact_normalized_emittance flag in the global_settings command.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&slice_analysis

STRING output = NULL;

long n_slices = 0;

double s_start = 0;

double s_end = 1e300;

long final_values_only = 0;

&end

• output — The (incomplete) filename of the output file. Recommended value is “%s.slan”.

• n_slices — Number of slices to use.

• s_start, s_end — Position in beamline at which to start and stop performing slice analysis.

• final_values_only — If nonzero, then slice quantities are computed only at the end of the
beamline.

118

subprocess

7.60 subprocess

• type: action command.

• function: execute a system command in a shell.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&subprocess

STRING command = NULL;

&end

• command — The text of the command to execute. The command may use the sequence “%s”
for substitution of the rootname as set by run_setup. A literal “%s” must be entered as
“%%s”.

119

steering_element

7.61 steering element

• type: setup command.

• function: setup for use of a given parameter of a given element as a steering corrector.

• sequence: must precede correct.

• N.B.: any use of this command disables the built-in definition of HKICK, VKICK, and
HVKICK elements as steering elements.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&steering_element

STRING name = NULL;

STRING element_type = NULL;

STRING item = NULL;

STRING plane = "h";

double tweek = 1e-3;

double limit = 0;

long start_occurence = 0;

long end_occurence = 0;

long occurence_step = 1;

double s_start = -1;

double s_end = -1;

STRING after = NULL;

STRING before = NULL;

&end

• name — Optional: the (possibly wild-carded) name of the element to add to the steering list.
If not given, then element_type must be given.

• element_type — Optional: the (possibly wild-carded) name of the element type to add to
the steering list. If not given, then name must be given.

• item — The parameter of the element to be varied.

• plane — May be either “h” or “v”, for horizontal or vertical correction.

• tweek — The amount by which to change the item to compute the steering strength.

• limit — The maximum allowed absolute value of the item.

• start_occurence, end_occurence— If nonzero, these give the starting and ending occurence
numbers of elements that will be included. N.B.: if wildcards are used, occurence number
counting is for each set of identically-named elements separately, rather than for the sequence
of matched elements.

• s_start, s_end — If non-negative, these give the gaving and ending position limits for the
end-of-element locations of elements to be included.

120

• after — The name of an element. If given, only elements that follow the named element in
the beamline are included.

• before — The name of an element. If given, only elements that precede the named element
in the beamline are included.

121

touschek_scatter

7.62 touschek scatter

• type: setup/action command.

• function: Simulate Touschek scattering process at each TSCATTER element based on Monte
Carlo method. The local scattering rate is calculated by using Piwinski’s formula and from
the Monte Carlo simulation. Scattered particles can be tracked through the entire beamline
(one pass only), and beam loss information is recorded.

• sequence: must follow run_setup and twiss_output.

• can use parallel resources (Pelegant)

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• notes:

– A momentum aperture file is required previous using this command. It should contain
momentum aperture at least at each TSCATTER element and can be obtained by running
momentum_aperture command.

– The simulation can be done for a Gaussian distributed beam or an arbitrary particle
distribution given by histogram file(s) (See MHISTOGRAM).

– When using histogram file as input, it should contain data at least at each TSCATTER

element. This can be done by inserting a MHISTOGRAM element following each TSCATTER

element. With lumped=1 option, a multi page SDDS file will be output automatically
or you can combine individual output file into a multi page SDDS file before using this
command.

– The input particle distribution can be given in 3 ways: 2D(x-x’)+2D(y-y’)+2D(dt-dp);
or 4D(x-x’-y-y’)+2D(dt-dp); or 6D(x-x’-y-y’-dt-dp); base on user’s choice. We recom-
mend to use lower “order” histogram table if the original particle number which used to
generate these table is not large enough.

– The emit_*, emit_dp and sigma_s is always required for running the simulation (Used
for Piwinski’s rate). Use closed value when simulate a non-Gaussian distributed bunch.

&touschek_scatter

double charge = 0;

double frequency = 1;

double emit_x = 0;

double emit_nx = 0;

double emit_y = 0;

double emit_ny = 0;

double sigma_dp = 0;

double sigma_s = 0;

double distribution_cutoff[3] = {3, 3, 3};

double Momentum_Aperture_scale = 0.85;

STRING Momentum_Aperture = NULL;

STRING XDist = NULL;

122

STRING YDist = NULL;

STRING ZDist = NULL;

STRING TranDist = NULL;

STRING FullDist = NULL;

STRING bunch = NULL;

STRING loss = NULL;

STRING distribution = NULL;

STRING initial = NULL;

STRING output = NULL;

long nbins = 100;

double sbin_step = 1;

long n_simulated = 5000000;

double ignored_portion = 0.01;

long i_start = 0;

long i_end = 1;

long do_track = 0;

long match_position_only = 0;

long overwrite_files = 1;

long verbosity = 0;

&end

• charge — Bunch charge in Coulombs. May not be zero.

• frequency — Bunch repetition frequency in Hz. The product of the charge and frequency

gives the average current in Amps.

• emit_x, emit_y — RMS emittance for the x and y planes. Ignored if RMS normalized
emittance is nonzero.

• emit_nx, emit_ny — RMS normalized emittance for the x and y planes.

• sigma_dp, sigma_s — Rms fractional momentum spread, σδ, and rms bunch length.

• distribution_cutoff — The number of sigmas to use in each plane for Gaussian beam.

• Momentum_Aperture — Input file containing the estimated momentum aperture at each
TSCATTER element. This can be obtained from the momentum_aperture command in a sepa-
rate run. (If using the parallel version to obtain the momentum aperture, it will be necessary
to use output_mode=0 or else reorganize the data if output_mode\neq 0. Also, it will be
necessary to use sddssort to sort the data by the s column.)

• Momentum_Aperture_scale— This value times the aperture value from Momentum_Aperture

file sets up the limit on δm in the simulation. Only particles that have δ > δm will be kept
for tracking. And the scattering rate is calculated at this value.

• XDist, YDist, ZDist — Input filename of 2D histogram table of X, Y, and Z plane. X and
Y are ignored when TranDist or FullDist is present.

• TranDist — Input file name of the 4D histogram table of transverse plane. Has to be used
together with ZDist.

• FullDist— Input file name of the 6D histogram table. If present, all other tables are ignored.

123

• bunch — The (incomplete) name of an SDDS file to which the phase-space coordinates of
the simulated scattered particles are to be written. Recommended value: “%s-%03ld.bun”.
If “%03ld” or the equivalent is not provided then only the last simulated bunch is kept (one
bunch for one TSCATTER element).

• loss — The (incomplete) name of an SDDS file to which the original and final phase-space
coordinates of the lost simulated scattered particles are to be written. Recommended value:
“%s-%03ld.los”. Used together with do_track = 1.

• distribution — The (incomplete) name of an SDDS file to which the one-dimensional
histogram of simulated scattered particles are to be written. Recommended value: “%s-
%03ld.dis”

• initial — The (incomplete) name of an SDDS file to which the one dimension histogram of
simulated particles before scattering are to be written. Recommended value: “%s-%03ld.ini”

• output — The (incomplete) name of an SDDS file. The average loss rate (particles per
second) over a step size of sbin_step at location s is written to this file. Recommended
value: “%s-%03ld.out”

• sbin_step — Bin size for loss rate summary output to the output file.

• nbins — Number of bins used for the distribution and initial table.

• n_simulated — The total number of simulated scattered particles with δ > δm. Choosing
too small a value will cause unreliable results. Note: use an integer number here. A number
such as 5E6 sometimes will cause you trouble.

• ignored_portion — Fraction of the total scattering rate ignored in tracking. Using this
parameter will greatly increase the tracking speed. For example, if the total loss rate is 50%
of the total scattering rate, then ignoring for tracking purposes 5% (0.05) of the scattered
particles will cause a ∼10% error, but the simulation is greatly sped up.

• i_start, i_end — The simulation will be done from the i_startth to the i_endth TSCATTER

element along the beamline.

• do_track — If non-zero, scattered particles will be tracked from their generation location for
n_passes (given by run_control). If non-zero, the run_control command must proceed the
|touschek_scatter|command. The loss property can be analysed using output or loss.

• match_position_only— If non-zero, then matching of the momentum aperture data to the
lattice is done using the position data only (s column), rather than the element names. Can
be helpful if errors appear about files ending prematurely or data not matching.

• overwrite_files — If non-zero, then output files will be overwritten. If set to zero, then
when output files are found, the corresponding computations are skipped. This can be used
to restart a Touschek scattering run, provided the output filenames are index (e.g., of the
form “%s-%03ld.los” rather than “%s.los”.)

Note: If using Pelegant to compute the momentum aperture with output_mode=1, it is neces-
sary to first run the script reorganizeMmap to put the data into the form needed by touschekLifetime.

124

transmute_elements

7.63 transmute elements

• type: setup command.

• function: Changes the type of selected elements, which may be used to turn off unneeded
diagnostics and speed up tracking when concatenation is being used.

• Must be preceded by run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• notes:

– Any number of these commands may be given.

– The only property of the original element that is preserved is the length. For example,
transmuting a SBEN into a CSBEN will not have the expected result.

&transmute_elements

STRING name = NULL,

STRING type = NULL,

STRING exclude = NULL,

STRING new_type = "DRIF",

long disable = 0;

long clear = 0;

&end

• name — Possibily wild-card containing string specifying the elements to which the transmu-
tation specification is to be applied.

• type — Possibily wild-card containing string specifying the element types to which the trans-
mutation specification is to be applied.

• exclude — Possibily wild-card containing string specifying elements to be excluded from the
specified transmutation. Does not affect elements transmuted due to other specifications.

• new_type — Type into which specified elements will be transmuted.

• disable — If nonzero, the command is ignored.

• clear — If nonzero, all prior transmutation specifications are deleted.

125

tune_footprint

7.64 tune footprint

• type: action/setup command.

• function: compute frequency map from tracking and use it to determine the chromatic and
amplitude tune footprints.

• sequence: must follow run_control.

• can use parallel resources (Pelegant)

• N.B.: the number of turns tracked is set by the run_control command.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&tune_footprint

STRING delta_output = NULL,

STRING xy_output = NULL,

double xmin = -0.02,

double xmax = 0.02,

double ymin = 1e-6,

double ymax = 0.02,

double x_for_delta = 1e-6,

double y_for_delta = 1e-6,

double delta_min = 0,

double delta_max = 0,

long ndelta = 21,

long separate_xy_for_delta = 0;

long nx = 20,

long ny = 21,

long verbosity = 1,

long quadratic_spacing = 1,

long compute_diffusion = 1;

long diffusion_rate_limit = -5,

long immediate = 0

long filtered_output = 1;

long ignore_half_integer = 0;

&end

• delta_output — The optional (incomplete) name of an SDDS file to send tune and diffusion
rate vs δ output to. Recommended value: “%s.dtf”. If optimization is done, this file is written
only at the end of optimization.

• xy_output — The optional (incomplete) name of an SDDS file to send tune and diffusion
rate vs (x, y) output to. Recommended value: “%s.atf”. If optimization is done, this file is
written only at the end of optimization.

• xmin, xmax — Limits of grid of initial x coordinates for tracking.

126

• ymin, ymax — Limits of grid of initial y coordinates for tracking. ymin should typically be a
small, positive value so that there is some betatron oscillation from which to get the tune.

• delta_min, delta_max—Limits of grid of initial δ coordinates for tracking. Not that particles
are not centered around the dispersive closed orbit.

• ndelta — Number of values of δ coordinate in the grid. If zero, chromatic footprint is not
determined.

• separate_xy_for_delta— If nonzero, tracking for the x and y momentum-dependent tunes
will be done separately, so that when x-plane tracking is performed, y = 0 initially. This
might be helpful if nonlinear coupling of y motion into the x plane causes the x tune to be
poorly determined for small x amplitudes. Increase the tracking time by a factor of two.

• nx — Number of values of x coordinate in the grid. If zero, amplitude footprint is not
determined.

• ny — Number of values of y coordinate in the grid. If zero, amplitude footprint is not
determined.

• verbosity — If nonzero, prints possibly useful information while running.

• quadratic_spacing — If nonzero, points are spaced “quadratically,” which actually means
that their squares are spaced linearly. It is highly recommended to keep this turned on, since
otherwise problems determining the tune when x ≈ 0 may result in invalid results.

• compute_diffusion — If nonzero, diffusion is computed, which requires tracking twice as
many turns.

• diffusion_rate_limit—Value of the diffusion rate dr above which the particle is considered
unstable, where

dr = log10

(

∆ν2x +∆ν2y
N

)

, (9)

where N is the number of turns tracked to determine each tune (equal to half of n_passes).

• immediate — If nonzero, the calculations take place immediately. If zero, then two modes
are possible

– If you wish to compute parameters on a closed orbit or after other calculations, be sure
to set this control to zero and ask for an output file with xy_output or delta_output.

– If you want to use this command to create quantities for optimization (see below), be
sure to set this control to zero and do not ask for an output file with xy_output or
delta_output.

• filtered_output — If nonzero, output is only provided for particles inside the stable foot-
print.

• ignore_half_integer — If nonzero, half-integer resonances are ignored in determining the
tune footprint.

127

This command makes available the following quantities for optimization. All quantities are
limited by particle survival, crossing of integer and half-integer resonances, and the diffusion rate
limit.

• FP.nuxSpreadChrom,FP.nuySpreadChrom — Spread in tunes due to chromaticity.

• FP.nuxChromMin, FP.nuxChromMax, FP.nuyChromMin, FP.nuyChromMax — Minimum and
maximum values of the x and y tunes from chromatic tune footprint.

• FP.deltaLimit — Minimum of absolute values of positive and negative δ limits.

• FP.nuxSpreadAmp, FP.nuySpreadAmp — Spread in tunes due to amplitude.

• FP.nuxAmpMin, FP.nuxAmpMax, FP.nuyAmpMin, FP.nuyAmpMax — Minimum and maximum
values of the x and y tunes from amplitude tune footprint.

• FP.xSpread, FP.ySpread — Spread in x and y values.

• FP.xyArea — Area of the limited x-y region, comparable to a dynamic acceptance. However,
this area is determined from a fixed grid and is not suitabl to optimization by itself.

• FP.diffusionRateMaxChrom, FP.diffusionRateMaxAmp—Maximum diffusion rates in chro-
matic and amplitude scans.

Typically, one strives to minimize FP.nuxSpreadChrom,FP.nuySpreadChrom, FP.nuxSpreadAmp,
FP.nuySpreadAmp, FP.diffusionRateMaxChrom, and/or FP.diffusionRateMaxAmp while maxi-
mizing FP.deltaLimit, FP.xSpread, and/or FP.ySpread, and ensuring that FP.xyArea, at min-
imum, doesn’t decrease. I.e., one wants the maximum stable region for momentum and position
deviations with the minimum spread in tunes and minimum diffusion.

128

twiss_analysis

7.65 twiss analysis

• type: setup command.

• function: analyze Twiss parameters within a user-defined region for purposes of optimization.

• sequence: must precede twiss_output.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&twiss_analysis

STRING match_name = NULL;

STRING start_name = NULL;

STRING end_name = NULL;

double s_start = -1;

double s_end = -1;

STRING tag = NULL;

long verbosity = 0;

long clear = 0;

&end

• match_name — Optional wildcard string to match to element names for selection of elements
to inculde in the analysis.

• start_name — Name of the element at which to start analysis. If the element occurs more
than once, the first occurrence is used.

• end_name — Name of the element at which to end analysis. If the element occurs more than
once, the first occurrence is used.

• s_start — Position (in meters) at which to start analysis.

• s_end — Position (in meters) at which to end analysis.

• tag — Name prefix for quantities computed by the analysis. The quantity names will have
the form tag.statistic.quantity, where statistic is one of min, max, and ave, and quantity is one
of betax, betay, etax, etay, alphax, alphay, etaxp, and etayp. E.g., if tag is region1,
then one could use expressions like region1.max.betax in optimization.

• clear — If nonzero, all previously defined analysis regions are deleted.

129

twiss_output

7.66 twiss output

• type: action/setup command.

• function: compute and output uncoupled Twiss parameters, or set up to do so.

• sequence: must follow run_setup.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• N.B.: the output of this command is strictly correct only when the beamline has vanish-
ingly small x-y coupling. For rings, use of coupled_twiss_output is an option when that
requirement is not sufficiently well satisfied.

&twiss_output

STRING filename = NULL;

long matched = 1;

long output_at_each_step = 0;

long output_before_tune_correction = 0;

long final_values_only = 0;

long statistics = 0;

long radiation_integrals = 0;

long concat_order = 3;

long higher_order_chromaticity = 0;

long higher_order_chromaticity_points = 5;

double higher_order_chromaticity_range = 4e-4;

double chromatic_tune_spread_half_range = 0;

long quick_higher_order_chromaticity = 0;

double beta_x = 1;

double alpha_x = 0;

double eta_x = 0;

double etap_x = 0;

double beta_y = 1;

double alpha_y = 0;

double eta_y = 0;

double etap_y = 0;

STRING reference_file = NULL;

STRING reference_element = NULL;

long reference_element_occurrence = 0;

long reflect_reference_values = 0;

long cavities_are_drifts_if_matched = 1;

long compute_driving_terms = 0;

long leading_order_driving_terms_only = 0;

STRING s_dependent_driving_terms_file = NULL;

long local_dispersion = 1;

&end

• filename — The (incomplete) name of an SDDS file to which the Twiss parameters will be
written. Recommended value: “%s.twi”.

130

• matched — A flag indicating, if set, that the periodic or matched Twiss parameters should
be found. If zero, calculations are performed in transport line mode starting from the given
initial values of betax, alphax, etc. N.B.: This may give different values for the chromaticity
even if the initial values are identical to those for a periodic solution. The reason has to do
with different assumptions about the initial conditions for particles in a transport line vs a
ring.

• output_at_each_step — A flag indicating, if set, that output is desired at each step of
the simulation. If you wish to compute Twiss parameters on a closed orbit or after other
calculations, be sure to set this control to a nonzero value.

• output_before_tune_correction — A flag indicating, if set, that output is desired both
before and after tune correction.

• final_values_only — A flag indicating, if set, that only the final values of the Twiss pa-
rameters should be output, and not the parameters as a function of s.

• statistics — A flag indicating, if set, that minimum, maximum, and average values of
Twiss parameters should be computed and included in output.

• radiation_integrals—A flag indicating, if set, that radiation integrals should be computed
and included in output. N.B.: Radiation integral computation is not correct for systems with
vertical bending, nor does it take into account coupling. See the moments_output command
if you need such computations.

• beta_X, alpha_X, eta_X, etap_X — If matched is zero, the initial values for the X plane.

• concat_order — Order of matrix concatenation to use for determining matrix for computa-
tion of Twiss parameters. Using a lower order will result in inaccuracy for nonlinear lattices
with orbits and/or momentum errors. However, for on-momentum conditions with zero orbit,
it is much faster to use concat_order=1.

• higher_order_chromaticity — If nonzero, requests computation of the second- and third-
order chromaticity. To obtain reliable values, the user should use concat_order=3 in this
namelist and the highest available order for all beamline elements. elegant computes the
higher-order chromaticity by finding the trace of off-momentum matrices obtained by con-
cantenation of the matrix for higher_order_chromaticity_points values of δ over the
full range higher_order_chromaticity_range. If quick_higher_order_chromaticity is
nonzero, then a quicker concatenation method is used that gives the second-order chromatic-
ity only.

• chromatic_tune_spread_half_range— Half range of δ for which the chromatic tune spread
is computed. The results are available in for optimization and in the twiss output file under
the names nuxChromUpper, nuxChromLower, and similarly for the y plane. This computation
uses the chromaticities.

• reference_file— If given, the name of a file from which twiss parameter data will be taken
to give the starting values. Ignored if matched is nonzero. The file should have the beta and
alpha functions with the same names as the file created by this command.

• reference_element — Element in reference_file at which to take the twiss parameter
values. If not given, the values at the last element in reference_file are used.

131

• reference_element_occurrence— Ignored if reference_element is not given. Otherwise,
the occurence number of reference_element to use. If 0, the last occurence is used.

• reflect_reference_values — If nonzero, reference values of αx,y and η′x,y are multiplied
by -1. This permits matching backwards from the reference point.

• cavities_are_drifts_if_matched — By default, if matched=1, elegant treats rf cavities
as drift spaces, allowing the user to have a cavity in the ring definition without it affecting the
lattice functions. By setting cavities_are_drifts_if_matched=0, one can force elegant

to use the actual matrix for the rf cavity. The differences between the results are generally
small, but the default behavior disagrees with the results of moments_output. This feature
is not available for cavities that change the beam energy (CHANGE_P0=1 in element definition
or always_change_p0=1 on run_setup).

• compute_driving_terms — If nonzero, then resonance driving terms [29, 36, 37] and tune
shifts with amplitude are computed by summing over dipole, quadrupole, sextupole, and
octupole elements. For dipoles, only the effects of gradients and sextupole terms are included;
curvature effects are not present in the theory. In addition, these quantities may be optimized
by using those names in optimization terms (see list below).

• leading_order_driving_terms_only— If nonzero, only the leading order driving terms are
computed. I.e., terms involving double sums over sextupole and quadrupole strengths are not
computed. However, leading-order octupole terms are computed, even though they affect the
same terms as the second-order sextupole and quadrupole terms. This option is provided
because computing the higher-order terms is time-consuming and not always worthwhile.

• s_dependent_driving_terms_file— The (incomplete) name of a SDDS file to which mag-
nitude, real and imaginary parts of s-dependent driving terms will be written. If you wish
to compute s-dependent driving terms, be sure to set this parameter. The following first
order resonant driving terms are implemented as defined in [42]: f10010, f10100, f30000,
f12000, f10200, f01200, f01110, f00300, f00120, f20100, f20010 and f11010. Please
note that the notation and meaning of the driving terms differs from those computed when
compute_driving_terms=1!

• local_dispersion — Normally, elegant will ignore acceleration in computing the disper-
sion. That is, the dispersion would be the “local” dispersion ∂x

∂δ , where δ was the local
fractional momentum deviation. In a linear system, the local dispersion is related to the
beam moments by ηx = 〈xδ〉/〈δ2〉. In a linac or other systems with rf elements, one might
also be interested in the “global” dispersion ∂x

∂δ0
, where δ0 is the energy deviation at the

beginning of the system. In this case, set local_dispersion=0. Alternatively, one may look
at the Ri6 elements of the matrix from matrix_output.

The output file from this command contains the following columns, giving values of quantities
at the exit of each element, unless otherwise noted.

• s — The arc length.

• ElementName — The name of the element.

• ElementType — The type name of the element.

• betax and betay — The horizontal and vertical beta functions.

132

• alphax and alphay — The horizontal and vertical alpha functions, where α = − dβ
2ds .

• psix and psiy — The horizontal and vertical betatron phase advance in radians.

• etax and etay — The horizontal and vertical dispersion functions.

• etaxp and etayp — The slopes of the horizontal and vertical dispersion functions.

• xAperture and yAperture— The horizontal and vertical apertures. If undefined, will have a
value of 10m. If the beam trajectory is non-zero, then the aperture will be changed (usually
reduced) accordingly. Hence, these are best understood as the effective apertures. They
are used in determining the horizontal and vertical acceptance parameters, Ax and Ay.

• pCentral0 — The central momentum (βγ) at the entrance to the element.

• dIn — Contribution to radiation integral In. Radiation integrals take account of horizontal
bending only.

The output file contains the following parameters. Note that chromatic quantities depend on the
order settings of the individual elements, the default order (in run_setup), and the concatenation
order given in the twiss_output command. These quantities pertain to the end of the lattice or
to the lattice as a whole.

• nux and nuy — The horizontal and vertical tunes.

• dnux/dp and dnuy/dp — The horizontal and vertical chromaticities, defined as dν/dδ.

• dnux/dp2 and dnuy/dp2 — The horizontal and vertical 2nd-order chromaticities, defined as
d2ν/dδ2. Will be zero if higher_order_chromaticity is zero.

• dnux/dp3 and dnuy/dp3 — The horizontal and vertical 3rd-order chromaticities, defined as
d3ν/dδ3. Will be zero if higher_order_chromaticity is zero.

• dbetax/dp and dbetay/dp — Chromatic derivatives of the horizontal and vertical beta func-
tions, defined as dβ

dδ .

• dalphax/dp and dalphay/dp — Chromatic derivatives of the horizontal and vertical alpha
functions, defined as dα

dδ .

• etax2, etax3, etay2, etay3 — Higher order dispersion in the horizontal and vertical planes.
For example, for the horizontal plane, the closed orbit at the end of the lattice depends on δ
according to x = ηxδ + ηx2δ

2 + ηx3δ
3. This differs from the chromaticity expansion, which is

given in terms of successive derivatives of ν(δ).

• dnux/dAx, dnux/dAy, dnuy/dAx, dnuy/dAy — Tune shifts with amplitude, where amplitude
is defined as Aq = (1 + αq)q

2/βq, with q = x or q = y. These will be zero unless the
tune_shift_with_amplitude command is given.

• h11001, h00111, h20001, h00201, h10002, h21000, h30000, h10110, h10020, h10200, h22000,
h11110, h00220, h31000, h40000, h20110, h11200, h20020, h20200, h00310, h00400— Res-
onance driving terms[29]. These will be zero unless compute_driving_terms is nonzero. See
table 2 for an explanation of each term.

133

• dnux/dJx, dnux/dJy, and dnuy/dJy — Tune shifts with amplitude from Bengtsson’s theory
[29]. See documentation for tune_shift_with_amplitude for discussion and comparison
with dnux/dAx etc. These will be zero unless compute_driving_terms is nonzero.

• Ax and Ay — The horizontal and vertical acceptance. These will be zero if no apertures are
defined.

• alphac, alphac2 — First- and second-order momentum compaction. The path length is
s = so + αcLδ + αc2Lδ

2.

• couplingIntegral, couplingDelta, and emittanceRatio — These quantities are defined
in section 3.1.4.4 of [19]. The computations include tilted quadrupoles, vertical orbit in
sextupoles, vertical sextupole displacement, and solenoids. Note that the emittance ratio
does not include the effect of vertical dispersion.

• In — The nth radiation integral.

• taux, tauy, taudelta — Radiation damping times for x, y, and δ.

• Jx, Jy, Jdelta — Damping partition factors for x, y, and δ.

• ex0, enx0 — Horizontal equilibrium geometric and normalized emittances.

• Sdelta0 — Equilibrium fractional rms energy spread.

• U0 — Energy loss per turn.

N.B.: the higher-order dispersion and higher-order chromaticity are computed using the con-
catenated third-order matrix. However, elegant only has third-order matrices for three elements:
alpha magnets, quadrupoles, and sextupoles. This may be acceptable if any dipoles (for example)
have large bending radius. Users who are concerned about these effects should perform off-energy
tracking using canonical elements (i.e., CSBEND, KQUAD, KSEXT, and MULT), which include
energy dependence to all orders.

Also, note that by default all elements are computed to second order only. You must change
the default_order parameter on run_setup to 3 in order to use the third-order matrices for
alpha magnets, quadrupoles, and sextupoles. You may also use the ORDER parameter on individual
element definitions.

134

Table 2: Meaning of the various driving terms[29].

Term Name Explanation

h11001 drives x chromaticity

h00111 drives y chromaticity

h20001 drives synchro-betatron resonances

h00201 drives momentum-dependence of beta functions

h10002 drives second order dispersion

h21000 drives νx
h30000 drives 3νx
h10110 drives νx
h10020 drives νx − 2νy
h10200 drives νx + 2νy
h22000 drives dνx/dJx
h11110 drives dνx/dJy
h00220 drives dνy/dJy
h31000 drives 2νx
h40000 drives 4νx
h20110 drives 2νx
h11200 drives 2νy
h20020 drives 2νx − 2νy
h20200 drives 2νx + 2νy
h00310 drives 2νy
h00400 drives 4νy

track

7.67 track

• type: major action command.

• function: track particles.

• sequence: must follow run_setup, run_control, and beam definition with bunched_beam or
sdds_beam.

• can use parallel resources (Pelegant)

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&track

long center_on_orbit = 0;

long center_momentum_also = 1;

long offset_by_orbit = 0;

long offset_momentum_also = 1;

long soft_failure = 1;

long stop_tracking_particle_limit = -1;

135

long check_beam_structure = 0;

STRING interrupt_file = "%s.interrupt";

&end

• center_on_orbit — A flag indicating whether to center the beam transverse coordinates on
the closed orbit before tracking.

• center_momentum_also — A flag indicating whether to center the momentum coordinate
also.

• offset_by_orbit — A flag indicating whether to offset the transverse beam coordinates by
the closed orbit before tracking. Similar to center_on_orbit, but the initial centroids of
the beam are preserved. The beam is simply displaced by the closed orbit rather than being
centered on it.

• offset_momentum_also—A flag indicating whether to also offset the beammomentum to the
momentum of the closed orbit. If the start_from_centroid or start_from_dp_centroid

parameters are used on the closed_orbit command, this flag should be set to 0; otherwise,
one will offset the beam central momentum by its own value.

• soft_failure — If there is an error during tracking (e.g., a failure of orbit correction),
continue to produce file output. This creates essentially empty slots in the files corresponding
to the failed steps.

• stop_tracking_particle_limit— If a non-negative is given, then elegant will stop track-
ing when the number of particles falls below the given value. It will be as if all the particles
were lost.

• check_beam_structure — For debugging use only.

• interrupt_file— Gives the (possibly incomplete) name of a file to monitor as a semaphore
to interrupt the tracking. If the file is created or updated during tracking, then tracking will
terminate on completion of the next pass. Output already written to WATCH files is preserved,
but unwritten data (e.g., buffered, but not written to disk) is lost.

There are also several deprecated parameters:

• use_linear_chromatic_matrix— For each particle, a first-order matrix is computed for the
particular momentum offset of the particle using the linear chromaticity and linear dependence
of the beta functions on momentum. Use ILMATRIX elements instead.

• longitudinal_ring_only — Tracks longitudinal coordinates only for a ring. Use ILMATRIX
elements instead.

136

tune_shift_with_amplitude

7.68 tune shift with amplitude

• N.B.: this command is deprecated, because it is too difficult to tune it to get reliable answers.
The use of driving term computation in twiss_output is recommended instead, even though it
doesn’t include all possibly relevant effects. For tune-spread calculations, the tune_footprint
command provides more versatility.

• type: setup command.

• function: prepare for computation of tune shifts with amplitude.

• sequence: must follow twiss_output.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

• methods:

Method 1 : tune shifts with amplitude are computed via tracking a series of particles at different
amplitudes or by a matrix method. NAFF is used to determine the tunes from the
tracking data. It is the user’s responsbility to optimize the parameters to ensure that
results are reasonable.

Method 2 : tune shifts are computed using a concatenated multi-turn third-order matrix. This
appears to be reliable for many cases we’ve tested.

Method 3 : tune shifts can be computed quickly using Bengtsson’s formulae [29] by setting compute_driving_terms=1
in twiss_output. For cases where all methods are valid, the results will differ by a factor
of 2 from the results obtained with this command. Also, the present command has more
general validity because it includes dipole curvature effects.

The quantities computed are ∂
∂An

x∂A
m
y
νp, where n ≥ 0 and m ≥ 0 are integers and p is x or y.

Aq = (1 + αq)q
2/βq, with q = x or q = y.

&tune_shift_with_amplitude

long turns = 2048;

double x0 = 1e-6;

double y0 = 1e-6;

double x1 = 3e-4;

double y1 = 3e-4;

long grid_size = 6;

long lines_only = 0;

long sparse_grid = 0;

long spread_only = 0;

double nux_roi_width = 0.02;

double nuy_roi_width = 0.02;

double scale_down_factor = 2;

double scale_up_factor = 1.05;

double scale_down_limit = 0.01;

double scale_up_limit = 1e-4;

long scaling_iterations = 10;

137

long use_concatenation = 0;

long verbose = 0;

long order = 2;

STRING tune_output = NULL;

&end

• turns — The number of turns to track. If zero, then the concatenated matrix is used instead
of tracking, and all other parameters of this command are irrelevant. The matrix method
doesn’t work well with all lattices. The order of the concatenated matrix is given by the
concat_order control in twiss_output.

• x0, y0 — The initial x and y amplitudes to use for determining the small-amplitude tunes.

• x1, y1 — The initial x and y amplitudes to user for determining the tune shifts. These values
should be small enough to ensure linearity in the tune shift.

• grid_size — Size of the grid of points in x and y.

• lines_only — If nonzero, then instead of a full set of grid_size2 particles, only two lines of
particles with x = 0 and/or y = 0 are tracked. In this case, no Ai

x ∗ Aj
y terms are computed

(except for i = 0 or j = 0). However, in addition to being faster, the results may be more
reliable, e.g., ∂νx/∂Ay = ∂νy/∂Ax may be more closely satisfied.

• sparse_grid — If nonzero, then instead of a full set of grid_size2 particles, a sparse grid
of particles is tracked. Will save time at some expense in accuracy.

• spread_only — Compute the tune spread only and don’t bother with the tune shift coeffi-
cients. These tune spreads can be optimized and appear in the twiss output file under the
names nuxTswaLower, nuxTswaUpper, and similarly for the y plane. This is the recommended
way to reduce tune shift with amplitude, as the tune spread is more reliable than the coef-
ficients of the expansion. (Particles that get lost are automatically ignored in both types of
computations.)

• nux_roi_width, nuy_roi_width — Widths of the region of interest for x and y tunes. As
the grid is filled in, elegant finds the tune for each tracked particle on the grid. Successive
tune values are looked for in the region of the given width around the previous tune value.
This prevents jumping from the main tune peak to another peak, which can happen when
the tune spectrum has many lines.

• scale_down_factor, scale_up_factor, scale_down_limit, scale_up_limit, scaling_iterations
— These control automatic scaling of the amplitudes. If elegant sees a tune shift larger than
scale_down_limit it will decrease x0 (or y0) by the factor scale_down_factor. If elegant
sees a tune shift smaller than scale_up_limit it will increase x0 (or y0) by the factor
scale_up_factor. Suggestion: if you find yourself playing with these values and the initial
amplitudes in order to get reliable TSWA coefficients, try just using the tune spread.

• verbose — If nonzero, information about the progress of the algorithm is printed to the
screen.

• use_concatenation — If nonzero, then tracks with the concatenated matrix instead of
element-by-element. The order of the concatenated matrix is given by the concat_order

control in twiss_output. The user should experiment with this option to see if the results
are reliable for a particular lattice.

138

vary_element

7.69 vary element

• type: setup command.

• function: define an index and/or tie a parameter of an element to it.

• sequence: must follow run_control

• N.B.: It is not possible to vary an element if the element name starts with one of the following
characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, or -. The reason is that elegant will attempt
to make an SDDS parameter name containing the element name, and these characters are
disallowed at the beginning of such a name.

• Command syntax, including use of equations and subcommands, is discussed in 7.2.

&vary_element

long index_number = 0;

long index_limit = 0;

STRING name = NULL;

STRING item = NULL;

double initial = 0;

double final = 0;

long differential = 0;

long multiplicative = 0;

long geometric = 0;

STRING enumeration_file = NULL;

STRING enumeration_column = NULL;

&end

• index_number — A non-negative integer giving the number of the index.

• index_limit — A positive integer giving the number of values the index will take. Must be
given if this index_number has not been listed in a previous vary_element command, unless
enumeration_file is given.

• name — The name of an element.

• item — The parameter of the element to vary.

• initial, final — The initial and final values of the parameter.

• enumeration_file — Name of an SDDS file giving values for the item.

• enumeration_column — Column of the SDDS file giving the values.

• differential— If nonzero, the initial and final values are taken as offsets from the predefined
value of the parameter.

• multiplicative — If nonzero, the initial and final values are taken as multipliers to be
applied to the predefined value of the parameter in order to obtain the actual initial and final
values.

• geometric — If nonzero, then variation is geometric rather than arithmetic.

139

8 Specialized Tools for Use with elegant

A number of specialized programs are available that work with elegant. Most are SDDS-compliant,
so they will also work with any program that reads or writes appropriate SDDS data. The follow-
ing is a brief description of each program. Full descriptions for many programs are available on
subsequent pages. Most programs will return a help message if the program name is given with
no arguments, which should be sufficient documentation and may be more up-to-date than these
manual pages.

• abrat — A program to integrate particles through a 3D magnetic field map. The name
stands for Asymmetric Bend RAy trace. This program uses the same method as the BRAT

element in elegant.

• analyzeMagnets — Generates SDDS and latex files giving magnet parameters. (Program by
M. Borland.)

• astra2elegant — Converts ASCII particle output from ASTRA [30] to a binary SDDS file
suitable for use with elegant. This program is recommended over the astra2sdds program
on the ASTRA website, because the latter produces ASCII SDDS files that are quite slow to
read and does not perform the correct computations for low-energy beams. (Program by M.
Borland.)

• bremsstrahlungLifetime — Computes gas bremsstrahlung lifetime from local momentum
acceptance and Twiss parameter output, assuming a constant gas pressure. (Program by M.
Borland.)

• bremsstrahlungLifetimeDetailed— Computes gas bremsstrahlung lifetime from local mo-
mentum acceptance and Twiss parameter output, using a user-supplied, s-dependent gas
pressure. (Program by M. Borland.)

• computeCoherentFraction — Computes the coherent fraction for undulator radiation.

• computeGeneralizedGradients — Computes generalized gradients for use with the BGGEXP
element.

• computeSCTuneSpread — Compute space charge tune spread.

• coreEmittance — Computes the slice emittance for the beam core (e.g., 80% of the beam).
(Program by X. Dong.)

• csrImpedance — Computes the shielded steady-state CSR impedance for a dipole magnet.
The output can be used immediately with elegant’s ZLONGIT element. (Program by Y.
Wang, H. Shang, and M. Borland.) See also the makeSummedCsrZ script.

• doubleDist6 — Increases the number of particles in a particle input file by successively
doubling the number. Intended to be used to increase the number of particles produced
by a photoinjector simulation to improve stability of CSR and LSC simulations. See also
smoothDist6. (Program by M. Borland.)

• elasticScatteringAnalysis — Computes elastic gas scattering lifetime and loss distribu-
tion from multi-location tracking data, Twiss parameter output, and gas pressure distribu-
tion. Use with output of the elastic_scattering command in Pelegant. (Program by M.
Borland.)

140

• elasticScatteringLifetime—Computes elastic gas scattering lifetime from single-location
dynamic acceptance and Twiss parameter output, assuming a constant gas pressure. (Pro-
gram by M. Borland.)

• elasticScatteringLifetimeDetailed—Computes elastic gas scattering lifetime from single-
location dynamic acceptance and Twiss parameter output, using a user-supplied, s-dependent
gas pressure. (Program by M. Borland.)

• elegant2astra — This program translates elegant phase space files into ASTRA [30] for-
mat. (Program by M. Borland.)

• elegant2track — This program translates elegant phase space files into TRACK [32] for-
mat. The ASCII version of TRACK is assumed. (Program by M. Borland.)

• elegant2genesis — This program performs slice analysis of particle output files, which are
suitable for use with the SDDS-compliant APS version of GENESIS[14]. This program is
part of the SDDS toolkit. See the SDDS toolkit manual for documentation. (Program by R.
Soliday and M. Borland.)

• elegantto — Translates an elegant-style lattice file (or a MAD file, with some restrictions)
into formats accepted by other programs, such as COSY, PARMELA, PATPET, PATRICIA,
TRANSPORT, XORBIT, and MAD8. Will also generate an SDDS file containing lattice
data. (Program by M. Borland.)

• haissinski — Computes the steady-state longitudinal distribution in an electron storage
ring. Requires as input a file containing the Twiss parameters around the ring, such as that
provided by the twiss_output command. Wakes can be specified with either a L, R model,
a BBR resonator model or a wake function. Other inputs are external rf system parameters,
with possibility of a harmonic cavity. Output is a charge or current profile with longitudinal
time coordinate (front of bunch is at positive times). (Program by L. Emery and M. Borland.)

• ibsEmittance— Computes local intra-beam scattering rates for both storage ring and linac.
Also computes the equlibrium transverse and longitudinal emittances of a beam in an electron
storage ring, resulting from the combination of quantum excitation, damping, and intra-beam
scattering. Requires as input a file containing the Twiss parameters, such as that provided
by the twiss_output command. (Program by L. Emery, M. Borland, and A. Xiao)

• impact2elegant — Tranlates IMPACT-T [31] output into elegant conventions. (Program
by M. Borland.)

• impact2sdds — Translates IMPACT-T output files into SDDS for easier postprocessing.
(Program by M. Borland.)

• ionTrapping — Uses lattice function data from elegant to compute ion trapping condition
in a ring. (Program by M. Borland.)

• LFBFirSetup — This script prepares data that can be used to configure turn-by-turn longi-
tudinal feedback using TFBDRIVER and TFBPICKUP elements. (Program by M. Borland.)

• longitCalcs — Performs calculations of longitudinal dynamics parameters in storage rings,
using output from elegant’s twiss_output command. Can also compute voltages for bunch
lengthening and output these to a file that can be use with load_parameters. (Program by
M. Borland.)

141

• makeSummedCsrZ — Computes the shielded or free-space steady-state CSR impedance for a
ring composed of one or more types of dipole magnet. The output can be used immediately
with elegant’s ZLONGIT element. (Program by M. Borland.)

• plotTwiss – Plots the twiss parameters using data from the twiss_output command. (Pro-
gram by L. Emery and M. Borland.)

• plotTwissBeamsize – Plots the beam sizes using data from the twiss_output command.

• prepareTAPAs — Allows processing files from twiss_output into a form that is accepted
by the Android App TAPAs [46]. The resultant files can be copied to, e.g., the downloads
area on the Android device, from which they can be read by TAPAs for configuration of the
Storage Ring Scaling activity. (Program by M. Borland.)

• radiationEnvelope—A tool for use with the output of sddsbrightness and sddsfluxcurve.
It analyzes data for many harmonics and produces a single curve that shows the envelope of
maximum brightness or flux over all harmonics. (Program by M. Borland.)

• removeBackDrifts — Allows post-processing s-dependent files to remove negative drifts,
which improves the appearance of plots and is needed for certain types of analysis. (Program
by M. Borland.)

• sddsanalyzebeam — Analyzes a beam of macro-particles and produces an SDDS file con-
taining beam moments, emittances, equivalent beta functions, etc. The beam file is of the
type written by elegant using the output field of the run setup command, or the WATCH
element. (Program by M. Borland.)

• sddsbrightness— Uses twiss parameter output or data from sddsanalyzebeam to compute
undulator brightness curves. (Program by H. Shang, R. Dejus, M. Borland, X. Jiao.)

• sddsbs — Computes bending magnet spectra. (Program by H. Shang and M. Borland.)

• sddsbunchingfactor — Computes bunching factor vs frequency from phase space data.
(Program by M. Borland.)

• sddsemitproc — Analyzes quadrupole scan emittance measurement data. Accepts a file
containing the transport matrix for each point and measured beam sizes. The file may, for
example, be the file produced by the final field of the run setup command. The quadrupole
scan can be executed inside of elegant using vary elements. (Program by M. Borland.)

• sdds4x4sigmaproc — Analyzes quadrupole scan beam moment measurement data to deter-
mine the initial 4x4 sigma matrix of the beam. Accepts a file containing the transport matrix
for each point and measured beam sizes. The file may, for example, be the file produced by
the final field of the run setup command. The quadrupole scan can be executed inside of
elegant using vary elements. (Program by M. Borland.)

• sdds5x5sigmaproc — Analyzes quadrupole scan beam moment measurement data to deter-
mine the initial 5x5 sigma matrix of the beam. Accepts a file containing the transport matrix
for each point and measured beam sizes. The file may, for example, be the file produced by
the final field of the run setup command. The quadrupole scan can be executed inside
of elegant using vary elements. To work, requires a horizontal bending magnet in the
beamline and variation quadrupoles before and after the bending magnet. (Program by M.
Borland.)

142

• sddsfindresonances — Uses output from frequency map analysis to find and identify reso-
nance lines. (Program by H. Shang, M. Borland.)

• sddsfluxcurve — Uses twiss parameter output or data from sddsanalyzebeam to compute
undulator flux tuning curves. (Program by M. Borland, H. Shang, R. Dejus.)

• sddsmatchmoments — Transforms a beam of macro-particles to match a given set of 6x6
beam moments, where the moments are stored in an output file from moments_output.

• sddsmatchtwiss — Transforms a beam of macro-particles to match to given beta functions
and dispersion. The beam file is of the type written by elegant using the output field of the
run setup command, or the WATCH element. (Program by M. Borland.)

• sddsws — Computes wiggler spectra, using code from WS (by R. Dejus). (Program by H.
Shang.)

• sddsurgent — Uses algorithms from the programs US (by R. Dejus) and URGENT (by
R. Walker) for computation of undulator radiation properties, including power density and
intensity distributions. (Program by H. Shang, R. Dejus, M. Borland, X. Jiao.)

• sddsrandmult — Simulates the effect of random mechanical errors in a quadrupole or sex-
tupole, generating multipole error data that can be used with elegant’s KQUAD and KSEXT

elements. (Program by M. Borland.)

• sddssampledist — This program allows creating particle distributions from user-designed
distribution functions. It is thus a more flexible alternative to bunched_beam. This program
is part of the SDDS toolkit. See the SDDS toolkit manual for documentation. (Program by
M. Borland and H. Shang.)

• smoothDist6s — Increases the number of particles in an input particle distribution. At
the same time, smooths the distribution and adds optional energy and density modulation.
Intended to be used to increase the number of particles produced by a photoinjector simulation
to improve stability of CSR and LSC simulations. Also useful in studying the growth rate for
energy and density modulations. See also doubleDist6. (Program by M. Borland.)

• The script spiffe2elegant allows converting the output of the PIC code spiffe to the same
form as output by elegant. Note that elegant will read spiffe output directly. This script
just allows converting the data for use with related programs, such as sddsanalyzebeam.
(Program by M. Borland.)

• TFBFirSetup — This script prepares data that can be used to configure turn-by-turn trans-
verse feedback using TFBDRIVER and TFBPICKUP elements. (Program by M. Borland.)

• touschekLifetime— This program calculates Touschek lifetime using A. Piwinski’s formula.
Input files are generated from “twiss output” and “momentum aperture”. (Program by A.
Xiao and M. Borland.)

• track2sdds— Translates output files, including phase space files, from version 39 of TRACK
(with ASCII output [32]) into SDDS. (Program by M. Borland.)

• track2mag — Uses TRACK output files to create a file similar to the magnets outupt file
from elegant. This gives a profile of the beamline that can be plotted with other data.
(Program by M. Borland.)

143

• The scripts makeSkewResponseCP and correctCoupling can be used to compute the cross-
plane response matrices for skew quadrupoles and to perform coupling correction using those
matrices. (Program by M. Borland.)

• view3dGeometry — Uses freewrl viewer to display 3D geometry of a lattice. (Program by A.
Petrenko and M. Borland.)

144

abrat

8.1 abrat

• description: Integrates particle trajectories through an symmetric or asymmetric bending
magnet. The name stands for ”Asymmetric Bend RAy Tracing.” Features include the ability
to optimize the magnet strength and position to ensure, if possible, that the magnet joins
two user-defined trajectories. The results of these optimizations can be used in elegant with
the BRAT element.

• synopsis:

abrat field-file [-3dFieldFile]

[-interpolateField=parameterName,[,order=n][,extrapolate][,permissive]]

[-scan=x | xp | y | yp | delta,lower,upper,number | -beamFiles=input,output

] -vertex=x-in-meters,z-in-meters -nominalEntrance=x,y -nominalExit=x,y

-theta=targetInDegrees -rigidity=Tesla-meters [-output=filename]

[-fsc=value] [-dxDipole=m] [-dzDipole=m] [-yawDipole=value]

[-optimize[=verbose][fse,dx,dz,yaw]] -fseLimit=min,max -dxLimit=min,max

-dzLimit=min,max -yawLimit=min,max

[-fieldmapOutput=filename,zmin,zmax,nz,xmin,xmax,nx]

[-tolerance=integration-tolerance] [-quiet]

• files:

– field-file — Field map file. Normally, needs to contain columns x, z, and B, giving the
field in the midplane. In 3D mode, when the -3dFieldFile option is given, then the
file should contain x, y, z, Bx, By, and Bz. In all cases, the beam is assumed to move
from left (z < 0) to right (z > 0) with the field bending counter clockwise. Positive x is
away from the center of curvature.

• switches:

– -3dFieldFile — If given, then field-file is expected to contain a 3D field map. See
above for details.

– -interpolate — If given, then field-file is expected to contain at least two 2D field
maps on separate pages of the file. These field maps could be, for example, from mea-
surements with different excitation currents, with the excitation current for each case
being stored in a named parameter; the pages must be arranged so that the parameter
values increase monotonically. ⁀abrat will then automatically interpolate among the field
maps to determine the required excitation current (for example); this overrides the fse
parameter of the -optimize option. By default, linear interpolation is used (order=1).
By default, the search will not go outside the range of the parameter values in the data;
if extrapolate is given, however, extrapolation outside this range is performed. By
default, the grid parameters of the several pages must match exactly; if permissive is
given, however, this requirement is not enforced.

– -scan — If given, then the value of the named accelerator coordinate is scanned to
create a bundle of incoming rays. Output is provided for each ray.

145

– -beamFiles — If given, then an elegant-style beam is read and the particles therein
are tracked through the dipole. A simular file is created for the output coordinates.
Coordinates are defined at the nominal entrance and exit planes. Back-drifts are used
to ensure that integration begins and ends outside the magnetic field region (i.e., all of
the defined field is included).

– -output — If given, particle trajectories are written to the named file.

– -fsc — If given, the fractional strength change to apply to the field. Typically taken
from a previous optimization run.

– -dxDipole — If given, the x positional change to apply to the field. A positive value
moves the field away from the center of curvature. Typically taken from a previous
optimization run.

– -dzDipole — If given, the z positional change to apply to the field. A positive value
moves the field further from the incoming beam. Typically taken from a previous opti-
mization run.

– -yawDipole — If given, the yaw to apply to the field. A positive value rotates the
magnet in the direction of bending. Typically taken from a previous optimization run.

– -optimize, -fseLimit, dxLimit, dzLimit, yawLimit — Invokes optimization of the
various strength and alignment parameters and specifies the allow range of variation.

– -fieldMapOutput— Requests output of a field map, allowing confirmation of the input
data.

– -tolerance — Integration tolerance.

– N.B.: The usage message describes additional switches that have had limited testing.
Use with caution.

• authors: M. Borland (ANL/APS).

146

astra2elegant

8.2 astra2elegant

• description: Converts ASCII particle output from ASTRA to a binary SDDS file suitable
for use with elegant. This program is recommended over the astra2sdds program on the
ASTRA website, because the latter produces ASCII SDDS files that are quite slow to read.

• synopsis:

astra2elegant [inputFile] [outputFile] [-centerReference]

[-pipe=[input][,output]]

• files:

– inputFile — ASCII particle output file from ASTRA.

– outputFile — SDDS file containing phase space data. May be used directly with
elegant.

• switches:

– -centerReference — Normally, astra2elegant offsets the arrival time of all particles
by the arrival time of the reference particle. This behavior can be suppressed by giving
the -centerReference option. In that case, the arrival time of the reference particle is
defined as 0.

– -pipe[=input][,output] — Standard SDDS toolkit pipe option.

• authors: M. Borland (ANL/APS).

147

computeGeneralizedGradients

8.3 computeGeneralizedGradients

• description: Converts data of the form Bρ(z, φ) into a set of generalized gradients [50] for
use with elegant’s BGGEXP element.

• synopsis:

computeGeneralizedGradients -input filename -output rootname -mainHarmonic

integer -nHarmonics integer [-allHarmonics 1]

• switches:

– input — Give the name of the input file, which must be an SDDS file having two
columns and two parameters. The columns are phi and Br, giving respectively the
polar angle in radians and the radial magnetic field in Tesla. Each page should have
the same number of rows n. The phi values are assumed to be equispaced starting at 0
and ending at 2π(1 − 1/n). The pages are labeled by the parameter z, which gives the
longitudinal coordinate in meters for the data on that page. These z values are assumed
to be equispaced and to cover the entire length of the magnet, starting and ending well
outside the magnet. (For periodic systems, the onePeriod option may be appropriate.
See below.) Finally, a parameter R must exist that gives the radius in meters for the Br
values.

– output — Give the root name for the output files. The main output file, which has
extension ggrad and is used directly with the BGGEXP element, will contain the general-
ized gradients for the normal (non-skew) components of the magnetic field. Each page
corresponds to a different harmonic.

– mainHarmonic — The main harmonic of the field, where 2 is quadrupole, 3 is sextupole,
etc. For fields with several designed-in harmonics, use the lowest, and see the entry for
allHarmonics.

– nHarmonics — The number of harmonics to include.

– allHarmonics — Normally, only allowed harmonics of the main harmonic are included.
However, if the magnet has several main harmonics (e.g., a combined-function quadrupole
and sextupole), this may be inappropriate. In that case, use this option to force use of
all harmonics greater than the given main harmonic.

• authors: M. Borland, R. Lindberg (ANL/APS).

148

coreEmittance

8.4 coreEmittance

• description: Computes the slice emittance for 80%, 85%, 90%, 95%, and 100% fractions of
the beam.

• synopsis:

coreEmittance -input inputFilename [-nSlices numberOfSlices] [-pngRoot

<string>] [-pngThickness <integer>(2)]

• files:

– The input file is a particle output file from elegant or a compatible program.

• switches

– -input — Specify the name of the input file.

– -nSlices — Optionally specify the number of longitudinal slices. The default is 100.

– -pngRoot — Optionally specify the file rootname for PNG graphics files. If omitted, no
PNG files are created.

– -pngThickness — Optionally change the thickness of lines for PNG graphics. The
default is 2.

• author: X. Dong.

149

csrImpedance

8.5 csrImpedance

• description: Computes the steady-state CSR impedance with shielding by parallel plates.
By default, the computed impedance is for a dipole magnet that bends the beam in a complete
circle.

• synopsis:

csrImpedance outputFile | -pipe[=out] -height=valueInMeters

-radius=valueInMeters -frequencyLimit=maximum=valueInHz[,minimum=valueInHz]

-n=integer [-filter=cutoff1,cutoff2] [-angle=radians]

• files:

– outputFile — SDDS file containing computed impedance. May be used directly with
elegant’s ZLONGIT element.

• switches:

– -height — The full height of the vacuum chamber, in meters.

– -radius — The radius of the bending magnet, in meters.

– -angle — The angle of the bending magnet, in radians. The default is 2π.

– frequencyLimit — Allows specifying the upper frequency limit (required), as well as
the lower frequency limit, for the computed impedance. elegant will not accept the
data if the lower limit is not 0. If the rms bunch length is σt, then it is suggested to
have the maximum frequency much greater than 1/(2πσt).

– -n — Allows specifying the number of data points to be computed. The number of
points computed is 2n + 1, which is required by elegant. A reasonable value is n = 10
to n = 14.

– -filter — Allows specifying the starting and ending frequency for a simple low-pass
filter. The frequencies are given as fractions of the maximum frequency. The filter ramps
linearly from 1 to 0 between the two cutoff values. If, for example, the cutoff is 0.2, then
the highest frequency in the impedance corresponds to a wavelength of 10 bins (2/0.2)
in elegant.

• authors: Y. Wang, H. Shang, ANL/APS. Based on a simplified form[26] of Warnock’s [25]
formula.

• Note: The script makeSummedCsrZ is more convenient for computing the CSR impedance of
rings with several types of dipoles, and also handles the free-space case.

150

doubleDist6

8.6 doubleDist6

• description: Increases the number of particles in a particle input file by successively dou-
bling the number. Intended to be used to increase the number of particles produced by a
photoinjector simulation to improve stability of CSR and LSC simulations.

The algorithm is as follows:

– For each doubling, insert a new particle “near” every pair of existing particles in time.
The particle has a new t value, but the same (x, xp, y, yp, p) as one of the original
particles.

– Bin the beam according to t into a large number of bins. Randomize the assignment of
p values relative to other coordinates across particles in the same bin, while additionally
adding a small random value to each p value.

• synopsis:

doubleDist6 -input name -output name -doublings number -nt bins

• files:

– input — A particle distribution file, such as might be used with sdds_beam.

– output — A particle distribution file, such as might be used with sdds_beam.

• switches:

– -doublings n — The number of times to double the size of the distribution. The
number of particles in the output file is 2n times the number in the input file.

– -nt bins — The number of time bins to use for momentum randomization. This helps
to avoid having many particles with exactly same momentum.

• author: M. Borland, ANL/APS.

• see also: smoothDist6s

151

haissinski

8.7 haissinski

• description: haissinski solves the Haissinski equation for the bunch steady-state longitu-
dinal distribution in the presence of various impedances.

• synopsis:

haissinski twissFile resultsFile

-wakeFunction=file,tColumn=name,wColumn=name |

-model=[L=Henry|Zn=Ohms],R=Ohm -charge=C | -particles=value |

-bunchCurrent=A -steps=numberOfChargeSteps -outputLastStepOnly

-RF=Voltage=V,harmonic=value[,phase=offsetInRadians] | -length=s

-harmonicCavity=Voltage=V,factor=harmonicFactor[,phase=radians]

-superPeriods=number -energy=GeV

-integrationParameters=deltaTime=s,points=number,startTime=s,

iterations=number,fraction=value,tolerance=value

• files:

– twissFile — Twiss output file from elegant, including radiation integral calculations.

– resultsFile — SDDS file containing computed bunch longitudinal distributions as
columns, along with analysis and conditions as parameters.

• switches:

– -wakeFunction=file,tColumn=name,wColumn=name—Optionally specifies the impedance
as a Greens function using values in an SDDS file. The time points must be equi-spaced.

– -model=[L=Henry|Zn=Ohms],R=Ohm— Optionally specifies the impedance as an induc-
tor L or broad-band value Zn, along with a resistance R.

– -charge=C | -particles=value | -bunchCurrent=A — Various ways to specify the
charge in each bunch.

– -steps=numberOfChargeSteps — Number of values of bunch charge to compute up
to the value specified with on the just-described options. Using more values can help
convergence, as the result of each prior step is used as the starting point for the new
step.

– -outputLastStepOnly — Requests output for the last charge step (full charge) only.

– -RF=Voltage=V,harmonic=value[,phase=offset] | -length=s—Two ways to spec-
ify the nominal bunch length. The phase value is an offset from the synchronous phase,
in radians, and is used only when a harmonic cavity is included.

– -harmonicCavity=Voltage=V,factor=harmonicFactor[,phase=radians]—Specifies
a harmonic cavity voltage, phase, and the ratio of the harmonic cavity frequency to the
main frequency.

– -superPeriods=number — Number of superiods of the lattice specified in twissfile to
simulate. If one has an N cell ring but only gives 1 cell in the input, this value should
be N. If one gives the whole ring, this value should be 1.

152

– -energy=GeV — Beam energy. If not given, the value in the twissfile is used.

– -integrationParameters=deltaTime=s,points=number,startTime=s,

iterations=number,fraction=value,tolerance=value — Integration parameters,
which must be set. deltaTime is the time interval for wake function and charge density
evaluation. points is the number of time points, while startTime is the time (relative
to synchronous phase) at which the time region starts. These values must be set by the
user based on knowledge of the likely bunch length. For the others, we suggest 1000
iterations, a fraction of 0.01, and a tolerance of 10−4.

• authors: L. Emery, M. Borland, ANL/APS.

153

ibsEmittance

8.8 ibsEmittance

• description: ibsEmittance computes growth rates and equilibrium emittances for electron
rings due to intrabeam scattering (IBS). It will also integrate the growth rates to show the time
evolution of the emittances. The IBS algorithm is based on the Bjorken and Mtingwa’s [15]
formula, and with an extension of including vertical dispersion. The program can also estimate
IBS growth rates for and transport line or linac beam, provided special attention paid to the
beam’s energy change (splitting RF cavities as needed).

• examples: This example computes the IBS equilibrium parameters and the contributions to
the growth rates (at equilibrium) vs position in the APS lattice.

ibsEmittance aps.twi aps.ibs -charge=5 -coupling=0.02

-rf=voltage=9,harmonic=1296

• synopsis:

ibsEmittance twissFile resultsFile -charge=nC|-particles=value

-coupling=value|-emityInput=value [-emitInput=value] [-deltaInput=value]

[-emit0=value] [-delta0=value] [-superperiods=value] [-isRing=1|0]

-RF=Voltage=MV,harmonic=value|-length=mm [-energy=MeV] [-growthRatesOnly |

-integrate=turns=number[,stepSize=number]] [-noWarning]

• files: twissFile is a twiss parameter file from the twiss_output command of elegant. You
must use the radiation_integrals flag in twiss_output.

• switches:

– -charge, -particles — Give the charge (in nanocoulombs) or the number of electrons.

– -coupling — Give the emittance or “coupling” ratio, ǫy/ǫx.

– -emityInput — Give the initial vertical emittance in meters.

– -emitInput — Give the initial total emittance in meters. If not specified, the value
from the parameter ex0 in twissFile is used.

– -deltaInput — Give the initial rms fractional momentum spread. If not specified, the
value from the parameter Sdelta0 in twissFile is used.

– -emit0, -delta0 — Redefine the equilibrium emittance and rms energy spread, if dif-
ferent from what is given in the twiss input file. Can be used, e.g., to include additional
source of energy spread, such as microwave instability, from an external calculation.

– -superperiods=value — If given, the number of superperiods in the lattice. twissFile
is taken to pertain to a single sector.

– -isRing — Specify the calculation is done for stored beam (isRing=1, default) or trans-
port line/linac beam (isRing=0). When isRing is set to 0, the energy scaling and inte-
gration calculation will be disabled.

– -RF=Voltage=MV,harmonic=value — Specify rf voltage and harmonic number.

– -length=mm — Specify the rms bunch length.

154

– -energy=MeV— Specify the beam energy. By default, this is taken from the pCentral
parameter in twissFile.

– -growthRatesOnly— If given, only the initial growth rates are computed. Equilibrium
emittance values are not computed. resultsFile will contain columns of initial growth rate
contributions from individual elements. Without this option, resultsFile would normally
contain columns of growth rate contributions at equilibrium.

– -integrate=turns=number[,stepSize=number] — If given, then resultsFile con-
tains the result of integrating the differential equations for the emittances for the given
number of turns and not the contributions of individual elements of growth rates. The
step size is the number of turns for each integration step, and can be adjusted to get
faster results. The options -growthRatesOnly and -integrate are not compatible.

– -noWarning — Removes warning messages.

• author: A. Xiao, L. Emery, M. Borland, ANL/APS.

155

ionTrapping

8.9 ionTrapping

• description: Computes ion trapping conditions using elegant twiss parameter output as
input.

• synopsis:

ionTrapping -twiss filename -superPeriods number -kappa ratio -output

filename -current mA -bunches number

• switches:

– twiss— Give the name of a Twiss output file from elegant. It is advisable to subdivide
the elements finely enough to get smooth representations of the lattice functions. The
file should be computed the radiation integrals turned on, since the natural emittance
and energy spread are needed.

– superPeriods — Give the number of superperiods of the basic cell described by the
Twiss output file.

– kappa — Give the ratio ǫy/ǫx. The emittances are computed from ǫ0 using ǫx = ǫ0

1+
Jy

Jx
κ

and ǫy = κǫx.

– output — Give the name of the output file. The file contains the information in the
input file, with the following added elements, among others:

∗ Column Acrit — Acrit(s) is defined as[49]

Acrit(s) =
NerpSb

2min(σx(s), σy(s))(σx(s) + σy(s))
, (10)

where Ne number of electrons per bunch, rp is the classical proton radius, Sb is the
bunch separation in meters, σx(s) is the local horizontal rms beam size, and σy(s)
is the local vertical rms beam size. Any singly-ionized species with atomic mass
greater than Acrit will be trapped.

∗ Parameters ex, ey — The horizontal and vertical emittances.

∗ Parameter AcritMin — Minimum value of Acrit(s).

∗ Parameters speciesTrappedFraction, where species is H2, H2O, CH4, CO, and CO2.
These give the fraction of the circumference over which H2, H2O, CH4, CO, and
CO2, respectively, are trapped.

– current — Give the total beam current milliAmps.

– bunches — Give the number of bunches.

• authors: M. Borland (ANL/APS).

156

elegantto

8.10 elegantto

• description: elegantto translates an elegant-style (or a MAD file, with some restrictions)
into formats accepted by other programs, such as COSY, PARMELA, PATPET, PATRICIA,
TRANSPORT, and XORBIT. Will also generate an SDDS file containing lattice data.

• examples: The following command would translate the elegant lattice file lattice.lte into
a TRANSPORT lattice file with 10mm quadrupole aperture and 5mm sextupole aperture, at
an energy of 1.5 GeV.

elegantto lattice.lte lattice.trin -transport=10,5,1.5

• synopsis:

elegantto inputfile outputfile {-patricia | -patpet |

-transport[=quadAper(mm),sextAper(mm),p(GeV/c)] |

-parmela[=quadAper(mm),sextAper(mm),p(GeV/c)] | -sdds[=p(GeV/c)] |

-cosy=quadAper(mm),sextAper(mm),p(MeV/c) | -xorbit | -mad8 }
[-angle tolerance=value] [-flip k signs] [-magnets=filename]

[-header=filename] [-ender=filename]

• files:

– inputfile — An elegant-style lattice file.

– outputfile — A file containing lattice data in the chosen format.

• switches:

– -cosy — Provide data for the program COSY INFINITY. This can take a little while
as the program must figure out the Enge coefficients that correspond to the FINT and
HGAP values for all the dipoles. The user should test the output carefully.

– -mad8 — Provide data for the program MAD8.

– -patricia — Provide data for the program PATRICIA.

– -patpet — Provide data for the program PATPET, a merging of the programs PATRI-
CIA and PETROS.

– -transport[=quadAper(mm),sextAper(mm),p(GeV/c)] — Provide data for the
program TRANSPORT (original style). One may give apertures for the quadrupoles
and sextupoles, as well as the beam momentum in GeV/c.

– -parmela[=quadAper(mm),sextAper(mm),p(GeV/c)]—Provide data for the pro-
gram PARMELA. One may give apertures for the quadrupoles and sextupoles, as well
as the beam momentum in GeV/c.

– -sdds[=p(GeV/c)] —Provide data in SDDS form. One may give the beam momentum
in GeV/c.

– -angle tolerance=value — PATPET and PATRICIA only allow sector and rectangu-
lar bends. This tolerance, in radians, determines how far from sector or rectangular a
bend definition may be and still get processed.

157

– -flip k signs — Changes the signs of all quadrupoles.

– -magnets=filename — Results in output of an additional SDDS file with the magnet
layout. This is the same file that would be generated by the magnets field of the
run setup command in elegant.

– -header=filename, -ender=filename — Allow specification of files to be prepended
and appended to the lattice output. For example, if additional commands are required
prior to the lattice definition to set up the run, they would be put in the header file. If
additional commands are needed after the lattice definition to initiate processing, they
would be put in the ender file.

• author: M. Borland, ANL/APS.

158

sddsanalyzebeam

8.11 sddsanalyzebeam

• description: sddsanalyzebeam analyzes a beam of macro-particles and produces an SDDS
file containing beam moments, emittances, equivalent beta functions, etc. The beam file is
of the type written by elegant using the output field of the run setup command, or the
WATCH element.

• examples:

sddsanalyzebeam run.out run.analysis

• synopsis:

sddsanalyzebeam [-pipe=[input][,output]] [inputfile] [outputfile]

[-nowarnings] [-correctedOnly] [-canonical]

• files:

– inputfile — An SDDS file containing the columns x, xp, y, yp, t, and p, giving the
six phase-space coordinates for a set of macroparticles. This file can be produced from
elegant, for example, using the output field of the run setup command, the bunch

field of the bunched beam command, or the WATCH element in coordinate mode.

– outputfile — An SDDS file containing columns giving moments, emittances, equivalent
Twiss parameters, and so on, for the macro-particles. Each row of this file corresponds
to a page of the input file. The names and meanings of the columns are identical to
what is used for elegant’s final output file from the run setup command. The file
from elegant, however, stores the results as parameters instead of columns; to convert
outputfile to that convention, use the SDDS toolkit program sddsexpand.

• switches:

– pipe — The standard SDDS Toolkit pipe option.

– nowarnings — Suppressses warning messages.

– correctedOnly — If given, only the “corrected” twiss parameters and emittances are
computed and output. The corrected twiss parameters have the dispersive compo-
nent subtracted. Normally, these are computed but given names like betacx, ecx, etc.
whereas the uncorrected values are betax, ex, etc. The corrected parameters are the
correct ones to match a beamline to, since they have the dispersive and mono-energetic
terms properly separated. The uncorrected values are more relevant if the dispersion is
spurious (i.e., uncorrected or due to something like CSR that doesn’t admit of correc-
tion).

– -canonical — If given, all computations are performed using canonical momenta qx =
px/p0 = x′(1 + δ)/

√

1 + x′2 + y′2 etc.

• author: M. Borland, ANL/APS.

159

sddsbrightness

8.12 sddsbrightness

• description: sddsbrightness computes undulator brightness curves using Twiss parameter
data from elegant or sddsanalyzebeam. Several calculation methods are available.

• examples:

sddsbrightness run.twi run.bri -harmonics=3

-Krange=start=0.2,end=2.2,points=100

-current=0.1 -totalLength=2.4 -periodLength=0.027 -coupling=0.01

sddsanalyzebeam run.out -pipe=out -correctedOnly

| sddsbrightness -pipe=in run.bri -harmonics=3

-Krange=start=0.2,end=2.2,points=100

-current=0.1 -totalLength=2.4 -periodLength=0.027 -coupling=0.01

• synopsis:

sddsbrightness [-pipe=[input][,output]] [twissFile] [SDDSoutputfile]

-harmonics=integer -Krange=start=value,end=value,points=integer

-current=Amps -totalLength=meters -periodLength=meters

[-emittanceRatio=value | -coupling=value] [-noSpectralBroadening]

[-method=string,device=string,neks=value]]

• files:

– twissFile — A Twiss output file from elegant, with radiation integral calculations in-
cluded, or an output from sddsanalyzebeam. In the latter case, the -correctedOnly

option should be used.

– SDDSoutputFile — Contains the brightness data in column form. For each requested
harmonic i, there are columns photonEnergyi, wavelengthi, and Brightnessi.

• switches:

– pipe — The standard SDDS Toolkit pipe option.

– harmonics — The number of harmonics to compute.

– Krange=start=value,end=value,points=integer — The range of the K parameter
for the undulator and the number of points to compute on that range.

– -current=Amps — The current in amperes. If one gives the average current, one gets
the average brightness.

– -totalLength=meters — The total length of the undulator, in meters.

– -periodLength=meters — The period length of the undulator, in meters.

– -emittanceRatio=value | -coupling=value— In the case of a twiss output file from
elegant, which does not contain the vertical emittance, one must supply one of these
options. If -emittanceRatio=R is given, ǫy = ǫ0 ∗ R and ǫx = ǫ0; this isn’t how things
work physically, but is provided for historical reasons. If -coupling=k is given, ǫx =

160

ǫ0/(1+Jy ∗k/Jx) and ǫy = k ∗ ǫx. ǫ0 is the equilibrium emittance from the twiss output
of elegant.

In the case of twiss output from sddsanalyzebeam, both emittances are present and
these options are ignored.

– -method=string,device=string,neks=value] — Choose which method to use for
brightness calculations. Options are

∗ borland— M. Borland’s approximation method. Fast, but not as reliable as others.

∗ dejus — R. Dejus’ non-zero emittance, infinite-N+convolution method. This is the
default.

∗ walkerinfinite—R.Walker’s method. Dejus’ method is derived from this method.

∗ walkerfinite — R. Walker’s method using finite N without convolution. This is
quite slow.

The device qualifier may be planar or helical. neks is used to change the number of
points used for finding the peak of the distribution.

• authors: M. Borland, H. Shang, R. Dejus (ANL).

161

sddsbunchingfactor

8.13 sddsbunchingfactor

• description: sddsbunchingfactor computes bunching factors for beams from elegant, e.g.,
from WATCH elements in coordinate mode or the output file from run_setup.

The bunching factor B(ω) is defined as

B(ω) =
1

N

√

√

√

√

(

N
∑

i=1

cosωti

)2

+

(

N
∑

i=1

sinωti

)2

, (11)

where ω is the angular frequency and ti is the time coordinate of the ith of N particles.

• examples:

sddsbunchingfactor run.out run.bfac -omegaRange=1e9,1e12 -points=300

-mode=log

• synopsis:

sddsbunchingfactor [-pipe=[input][,output]] [SDDSinputfile]

[SDDSoutputfile>] [-omegaRange=lowerHz,upperHz] [-points=number]

[-mode={linear|logarithmic}] [-combinePages]

• switches:

– pipe — The standard SDDS Toolkit pipe option.

– omegaRange — Give the range of ω values, in Hz.

– points — Give the number of points over the range of ω values.

– mode — Choose linear or logarithmic spacing of ω values.

– combinePages — Pages of the input file are combined, i.e., treated as a single bunch.

• authors: M. Borland (ANL).

162

sddsemitproc

8.14 sddsemitproc

• description:

sddsemitproc analyzes quadrupole scan emittance measurement data. It accepts a file
containing the transport matrix for each data point and measured beam sizes. Because
sddsemitproc uses the matrix rather than a thin-lens model, it can analyze data from arbi-
trarily complex scans, involving, for example, multiple thick-lens quadrupoles.

The matrix data can be prepared using elegant. For example, the vary element command
can be used to vary one or more quadrupoles. In addition, the beam size data may be prepared
using elegant, to allow simulation of emittance measurements.

sddsemitproc will perform error analysis using a Monte Carlo technique. A user-specified
number of random error sets are generated and added to all measurements. Analysis is
performed for each error set. Statistics over all the error sets provide most likely values and
error bars.

The beam parameters computed by sddsemitproc pertain to the beginning of whatever
system is simulated in elegant.

• examples:

elegant quadScan.ele sddscollapse quadScan.fin -pipe=out

| sddsxref -pipe=in quadScan.data -take=SigmaX,SigmaY

| sddsemitproc -pipe=in emitResults.sdds

• synopsis:

sddsemitproc [inputfile] [outputfile] [-pipe=[input][,output]]

[-sigmaData=xName,yName] [-variableName=columnName] [-errorData=xName,yName

| -errorLevel=valueInm,[{gaussian,nSigmas | uniform}]] [-nErrorSets=number]

[-seed=integer] [-limitMode=resolution | zero[,reject]

[-deviationLimit=xLevelm,yLevelm] [-resolution=xResolutionm,yResolutionm]

[-verbosity=level]

• files:

– inputfile — An SDDS file containing one or more pages with columns named Rij, where ij
is 11, 12, 33, and 34. These give elements of the horizontal and vertical transport matrices
from the beginning of a system to the observation point. The sigma matrix inferred will
be that for the beginning of the system. Typically, one starts with the final file from
the run setup command in elegant, and collapses it using sddscollapse. Each page
of inputfile corresponds to a different emittance measurement.

In addition to this data, inputfile must also contain columns giving the rms beam sizes
in x and y. The user supplies the names of the columns using the -sigmaData option;
otherwise, they default to Sx and Sy. These columns may be from elegant (e.g., Sx and
Sy), if one wants to simulate an emittance measurement. Note that the theory behind the
emittance measurement is strictly correct only for true RMS beamsize measurements.
Use of FWHM or some other measure will give unreliable results.

163

– outputfile — A file containing one page for each page of inputfile. The parameters of
outputfile give the measured geometric rms emittance, sigma matrix, and Twiss parame-
ters of the beam in the horizontal and vertical planes. If error sets were requested (using
-nErrorSets), then there are also parameters giving the error bars (“sigma’s”) of the
measured values.

• switches:

– -variableName=columnName— Supplies the name of a column in inputFile that will be
copied into outputFile for use in plotting. Does not affect any results.

– -sigmaData=xName,yName— Supplies the names of the columns in inputfile from which
the x and y rms beam sizes are to be taken. Default values are Sx and Sy, which are the
data provided by elegant.

– -errorLevel=valueInm,[gaussian,nSigmas | uniform]— Supplies the standard de-
viation of random errors to be added to the measured beam sizes for Monte Carlo error
analysis.

– -errorData=xName,yName— May be used to supply the names of columns in the input
file that contain the error level for each measurement. This is an option instead of using
-errorLevel, which allows varying the measurement error for each point.

– -nErrorSets=number — The number of sets of random errors to generate and add to
the measurements. Each error set is used to perturb the original measurement data.
The results are analyzed separately for each error set, then combined to give means and
error bars.

– -seed=integer— Seed for the random number generator. Recommend a large, positive,
odd integer less than 231. If no seed is given or if the given seed is negative, then a seed
is generated from the system clock.

– -resolution=xResolutionm,yResolutionm — The resolution of the beam size mea-
surements, in meters. These values are subtracted in quadrature from the measured
beam sizes to obtain the true beam sizes.

– -limitMode=resolution | zero[,reject]— If measured or perturbed beam sizes are
less than the resolution or less than zero, then errors will result. One can use this option
to limit minimum beam size values or reject points. In general, if one has to do this the
measurement is probably bad.

– -deviationLimit=xLevelm,yLevelm — Specifies the maximum deviation, in meters,
from the fit that data points may have and still be included. An initial fit is performed
for each randomized set or the raw data, as appropriate. Outliers are then removed and
the fit is repeated.

– -verbosity=level — Higher values of level result in more informational printouts as
the program runs.

• author: M. Borland, ANL/APS.

164

sddsfindresonances

8.15 sddsfindresonances

• description: sddsfindresonances scans frequency map analysis data and identifies reso-
nances.

• examples:

sddsfindresonances run.fma run.res -multipoles=dipole,quad,sext,oct

-type=skew sddsfindresonances run.fma run.res -multipoles=sext,oct

-type=skew,norm

• synopsis:

sddsfindresonances [-pipe=[input][,output]] [inputFile] [outputfile]

-multipoles=[all=integer]|[dipole,][quadrupole,][sextupole,][octupole,]

[-type=[normal,][skew]] [-variables=firstColumn,secondColumn]

• files:

– inputFile—By default, frequency map analysis output file from elegant’s frequency map

command or equivalent, containing at minimum the columns x, y, nux, and nuy. Each
page of the file is treated separately.

– outputFile — Contains the identified resonance lines, one resonance line per page. The
file contains the columns x, y, nux, and nuy, along with parameters that identify the
resonance.

• switches:

– pipe — The standard SDDS Toolkit pipe option.

– multipoles=[all=integer]|[dipole,][quadrupole,][sextupole,][octupole,] —
Choose what order of resonances to search for by naming the type of magnet that
nominally drives it, or by giving the maximum order to search (all option).

– -type=[normal,][skew]— Specify normal- or skew-driven resonances. Default is both.

– -variables=firstColumn,secondColumn — Use to change the default names for the
coordinate variables.

• authors: H. Shang, M. Borland. (ANL).

165

sddsfluxcurve

8.16 sddsfluxcurve

• description: sddsfluxcurve computes undulator fluxcurve curves using Twiss parameter
data from elegant or sddsanalyzebeam. Several calculation methods are available.

• examples:

sddsfluxcurve run.twi run.bri -harmonics=3

-electronBeam=current=0.1,coupling=0.01

-undulator=period=0.033,numberOfPeriods=70,kmin=0.01,kmax=2.7,points=100

-pinhole=distance=30,xsize=0.0025,ysize=0.001

• synopsis:

sddsfluxcurve [-pipe=[input][,output]] [twissFile] [SDDSoutputfile]

[-harmonics=integer] [-method=methodName[,neks=integer]]

[-mode=pinhole|density|total]

-undulator=period=meters,numberOfPeriods=integer,kmin=value,kmax=value[,points=number]

[-electronBeam=current=amps,[,coupling=value | emittanceRatio=value]]

[-pinhole=distance=meters,xsize=meters,ysize=meters

[,xnumber=integer][,ynumber=integer][,xposition=meters][,yposition=meters]]

[-nowarnings]

• files:

– twissFile — A Twiss output file from elegant, with radiation integral calculations in-
cluded, or an output from sddsanalyzebeam. In the latter case, the -correctedOnly

option should be used.

– SDDSoutputFile — Contains the flux data in column form. For each requested har-
monic i, there are columns photonEnergyi and wavelengthi, plus a column for the flux
(TotalFluxi, PinholeFluxi, or FluxDensityi).

• switches:

– pipe — The standard SDDS Toolkit pipe option.

– harmonics — The number of harmonics to compute.

– -method=string,neks=value]—Choose which method to use for calculations. Options
are

∗ dejus — R. Dejus’ non-zero emittance, infinite-N+convolution method. This is the
default.

∗ walkerinfinite—R.Walker’s method. Dejus’ method is derived from this method.

neks is used to change the number of points used for finding the peak of the distribution.

• mode=pinhole|density|total — Specify whether to compute the flux through a pinhole,
the flux density, or the total flux.

166

• -undulator=period=meters,numberOfPeriods=integer,kmin=value,kmax=value[,points=number]

— Specify undulator parameters. points is the number of K values to use on the interval
[Kmin,Kmax].

• electronBeam=current=amps,[,coupling=value | emittanceRatio=value]—Specify pa-
rameters of the electron beam. The current defaults to 0.1 A. Either the coupling or emittance
ratio must be given, unless the input file contains the parameter ey0 or the column ey.

• -pinhole=distance=meters,xsize=meters,ysize=meters[,xnumber=integer]

[,ynumber=integer][,xposition=meters][,yposition=meters] — Specify the parame-
ters of the pinhole. Required for -mode=pinhole. By default xnumber=20, ynumber=20,
xposition=0, and yposition=0.

• authors: M. Borland, H. Shang, R. Dejus (ANL).

167

sddsmatchtwiss

8.17 sddsmatchtwiss

• description: sddsmatchtwiss transforms a beam of macro-particles to match to given beta
functions and dispersion. This can be useful in taking macro-particle data from one simulation
and using it in another. For example, a beam file from PARMELA could be given the
right beta functions for use with a specific lattice in an elegant run, saving the trouble of
rematching to join the two simulations. Similarly, a beam from elegant could be matched
into an FEL simulation.

• examples:

sddsmatchtwiss elegantBeam.out FELBeam.in -xPlane=beta=1.0,alpha=-0.2

-yPlane=beta=0.5,alpha=0.2

• synopsis:

sddsmatchtwiss [-pipe=[input][,output]] inputfile outputfile

[-saveMatrices=filename] [-loadMatrices=filename]

[-xPlane=[beta=meters,alpha=value][,etaValue=meters][,etaSlope=value]]

[-yPlane=[beta=meters,alpha=value][,etaValue=meters][,etaSlope=value]]

[-zPlane=[deltaStDev=value][,tStDev=value]

[,correlation=seconds|alpha=value][,chirp=1/seconds][,betaGamma=value]]

[-nowarnings]

• files:

inputfile is an SDDS file containing one or more pages of data giving the phase-space coordi-
nates of macro particles. The macro particle data is stored in columns named x, xp, y, yp,
and p. The units are those used by elegant for the output file from run setup, the bunch file
from bunched beam, and the coordinate-mode output from the WATCH element. The data from
these columns is used together with the commandline arguments to produce new values for
these columns; the new values are delivered to outputfile. Other columns may be present
in inputfile; if so, they are passed to outputfile unchanged.

• switches:

– -xPlane=[beta=meters,alpha=value][,etaValue=meters][,etaSlope=value]—Spec-
ifies the desired parameters for the beam in the horizontal plane. beta and alpha give
β and α = −1

2
∂β
∂s ; they must both be given or both be omitted. etaValue and etaSlope

give the dispersion, η, and its slope, ∂η
∂s .

– -yPlane=[beta=meters,alpha=value][,etaValue=meters][,etaSlope=value]—Same
as -xPlane, except for the vertical plane.

– -zPlane=[deltaStDev=value][,tStDev=value][,{correlation=seconds|alpha=value}][,chirp=
— deltaStDev is σδ = 〈

√

(δ − 〈δ〉)2, tStDev is σt = 〈
√

(t− 〈t〉)2, and correlation

is σt,δ = 〈(δ − 〈δ〉)((t − 〈t〉)〉, in terms of which the longitudinal emittance is ǫ =
√

σ2
t ∗ σ2

δ − σ2
t,δ. alpha is −σt,δ/ǫ. The chirp, if requested, is added after generation of

the beam according to the other parameters. If betaGamma is given, the beam is “accel-
erated” to the given average value of βγ in a idealized sense, preserving the momentum
spread and transforming the transverse coordinates by the factor

√

〈βγ〉0/(βγ)desired.

168

– -saveMatrices=filename — Requests saving the transformation matrices to a file.

– -loadMatrices=filename — Requests loading the transformation matrices from a file.

– -nowarnings — Suppresses warning messages.

• authors: M. Borland, H. Shang, ANL/APS.

169

sddsrandmult

8.18 sddsrandmult

• description: sddsrandmult computes the multipole errors in a quadrupole or sextupole due
to various construction errors. The program is based on the analysis of Halbach[16], with
which I’ll assume the reader is familiar. Instead of separately evaluating the effect of certain
types of mechanical errors, it allows one to simulate several types of errors in order to get
statistical distributions for the multipole perturbations.

• examples:

sddsrandmult quadpert.in

• synopsis:

sddsrandmult inputFile

• usage:

inputFile is a text file containing a series of namelist commands specifying the parameters of
a quadrupole or sextupole, the type and amplitude of the errors to include, and the filenames
for output. Each namelist command results in a complete computation and generation of
output files.

The namelist command is perturbations. It has the following fields:

– type — A string value, either “quadrupole” (default) or “sextupole”.

– name — An optional string value giving the name of the element. This is used in
preparing data for elegant.

– SDDS output — An required string value giving the name of an SDDS file to which data
for each seed will be written. This file can be used to compute statistics or perform
histograms.

– elegant output — An optional string value giving the name of a text file to which
elegant commands and element definitions will be written. Note that this file is a
mixture of commands and element definitions. As such, the user must manually edit the
file and place the appropriate parts in the lattice file and the command file.

– kmult output — An optional string value giving the name of an SDDS file to which
data will be written in the format accepted by the RANDOM MULTIPOLES feature of the
KQUAD and KSEXT elements. This is the recommended data to use with elegant.

– effective length — The effective length of the magnet, in meters.

– bore radius — The bore radius of the magnet, in meters.

– reference radius — The reference radius for the multipole output, in meters.

– dx pole — The rms error, in meters, to be imparted to the horizontal position of each
pole.

– dy pole — The rms error, in meters, to be imparted to the vertical position of each
pole.

– dradius — The rms error, in meters, in the bore radius.

170

– dx split— The rms error, in meters, to be imparted to the horizontal distance between
the left and right sides of the magnet.

– dy split — The rms error, in meters, to be imparted to the vertical distance between
the top and bottom halves of the magnet.

– dphi halves — The rms error, in radians, to be imparted to the relative rotation of the
top and bottom halves of the magnet.

– n cases — The number of cases to simulate (default is 1000).

– n harm — The number of harmonics to simulate. The default is 0, which results in
computing all the harmonics for which Halbach indicates his treatment applies.

– random number seed — The initial seed for the random number generator. Should be
a large integer.

– long suppress main error — If non-zero, harmonics for the main multipole and lower
orders are suppressed. It is implicitly assumed that these are correctable through align-
ment and calibration.

• author: M. Borland, ANL/APS.

171

sddsurgent

8.19 sddsurgent

• description: sddsurgent uses algorithms from the program US (by R. Dejus) and URGENT
(by R. Walker) for computation of undulator radiation properties, including power density
and intensity distributions.

• examples: Take particle data from a tracking run and compute the power density using a 1
mm by 1 mm pinhole for a 72-period, 3.3-cm-period undulator set for a 5 keV first harmonic.

sddsanalyzebeam run.out -pipe=out -correctedOnly

| sddsurgent -pipe=in power.sdds -electronbeam=current=0.025

-calc=method=dejus,mode=powerDensity -us

-pinhole=dist=30,xsize=1,ysize=1,xnum=100,ynum=100

-undulator=period=0.033,number=72,energy=5e3

• synopsis:

sddsurgent inputFile outputFile

[-calculation=mode=modeString,method=methodString,harmonics=integer]

[-undulator=period=meters,numberOfPeriods=integer,

kx=value,ky=value,phase=value,energy=eV]

[-electronBeam=current=Amp,energy=GeV,spread=fraction,

xsigma=mm,ysigma=mm,xprime=mrad,yprime=mrad,nsigma=number]

[-pinhole=distance=m,xposition=value,yposition=value,

xsize=value,ysize=value,xnumber=integer,ynumber=integer]

[-alpha=steps=integer,delta=value] [-omega=steps=integer,delta=value]

[-nphi=integer] [-us] [-photonEnergy=maximum=eV,minimum=eV,points=number]

[-nowarnings] [-coupling=value | -emittanceRatio=value]

• files:

– inputFile — A Twiss output file from elegant, with radiation integral calculations
included, or an output from sddsanalyzebeam. In the latter case, the -correctedOnly
option should be used with sddsanalyzebeam.

– outputFile — Contains the output data, which varies depending on the calculation mode.
Use sddsquery to view the file contents.

• switches:

– pipe — The standard SDDS Toolkit pipe option.

– -calculation=mode=modeString,method=methodString,harmonics=integer—Choose
which calculation to perform and what method to us, as well as the number of undulator
harmonics to compute. Values for modeString are

∗ 1 | fluxDistribution: Angular/spatial flux density distribution.

∗ 2 | fluxSpectrum: Angular/spatial flux density spectrum

∗ 3 | brightness | brilliance: On-axis brilliance spectrum

172

∗ 4 | pinholeSpectrum: Flux spectrum through a pinhole

∗ 5 | integratedSpectrum: Flux spectrum integrated over all angles

∗ 6 | powerDensity: Power density and integrated power

Values for methodString are

∗ 1: Non-zero emittance; finite-N.

∗ 2: Non-zero emittance; infinite-N.

∗ 3 | WalkerFinite: Zero emittance; finite-N.

∗ 4 | Dejus: Non-zero emittance; infinite-N + convolution (Dejus, with -us only).

∗ 14 | WalkerInfinite: Non-zero emittance; infinite-N + convolution (Walker, with
-tt us only).

– -emittanceRatio=value | -coupling=value— In the case of a twiss output file from
elegant, which does not contain the vertical emittance, one must supply one of these
options. If -emittanceRatio=R is given, ǫy = ǫ0 ∗ R and ǫx = ǫ0. If -coupling=k is
given, ǫx = ǫ0/(1 + k) and ǫy = k ∗ ǫx. ǫ0 is the equilibrium emittance from the twiss
output of elegant.

In the case of twiss output from sddsanalyzebeam, both emittances are present and
these options are ignored.

– undulator=period=meters,numberOfPeriods=integer,

kx=value,ky=value,phase=value,energy=eV]— Specify undulator parameters. If en-
ergy (of first-harmonic photons) is given, kx=0 and ky is computed, corresponding to a
horizontally deflecting undulator. phase specifies the phase difference in degrees for a
canted undulator.

– -electronBeam=current=Amps,energy=GeV,spread=fraction,

xsigma=mm,ysigma=mm,xprime=mrad,yprime=mrad,nsigma=number specifies electron beam
parameters. Only the current is needed, as other data will be drawn from the input file.

∗ current — electron beam current in A. (default is 0.1A).

∗ energy — electron energy in Gev. (default is 7.0Gev).

∗ spread — electron energy spread.

∗ xsigma — horizontal RMS beam size (mm)

∗ ysigma — vertical RMS beam size (mm)

∗ xprime — horizontal RMS divergence (mrad)

∗ yprime — vertical RMS divergence (mrad)

∗ nsigma — no. of standard deviations of electron beam dimensions (size and diver-
gence) to be included.

– -pinhole=distance=m,xposition=value,yposition=value,

xsize=value,ysize=value,xnumber=integer,ynumber=integer — Specifies pinhole
parameters. Pinhole parameters are not needed for computing on-axis brilliance (i.e.,
mode=3).

∗ distance — distance from the source (m) (distance=0.0 gives angular flux).

∗ xposition — X-coordinate for center of pinhole (mm) or (mrad for distance=0)

∗ yposition — Y-coordinate for center of pinhole (mm) or (mrad for distance=0)

∗ xsize — X-size of pinhole (full width) (mm) or (mrad for distance=0)

∗ ysize — y-size of pinhole (full width) (mm) or (mrad for distance=0)

173

∗ xnumber — Number of subdivisions of pinhole in X (max 500)

∗ ynumber — Number of subdivisions of pinhole in Y (max 500)

– nphi=number — Specifies number of steps in phi between 0 and π/2. Must be less than
100. used in (calculation mode=1,2,3,4,5 calculation method=1,2).

– alpha=steps=integer,delta=value — Specifies the number of steps in angle alpha
(gamma*theta) (¡100). Delta specifies range of angles in alpha2 to be used, in units of
the angular equivalent to 1/N. Used in (mode=1, method=1) and method=3.

– omegasteps=integer,delta=value — Specifies the number of steps in photon energy
for the natural lineshape (¡5000). delta specifies range of photon energies to be included
in the natural lineshape in units (energy of fundamental/N). The default value covers
the range ±2/N of the natural lineshape. Used in mode=2,3,4,5 method=1.

– photonEnergy=maximum=eV,minimum=eV,points=number—Specifies the maximum and
minimum photon energy in eV, and the number of energy points to be computed.

• authors: H. Shang, R. Dejus, M. Borland, X. Jiao (ANL).

174

smoothDist6

8.20 smoothDist6

• description: Increases the number of particles in a particle input file by sampling a simplified
distribution based the input file. Intended to be used to increase the number of particles
produced by a photoinjector simulation to improve stability of CSR and LSC simulations.
Can also add energy and density modulations for performing gain studies.

The algorithm is as follows:

1. Fit a 12th-order polynomial to p as a function of t. Evaluate the polynomial at 10,000
equispaced points to generate a lookup table for the momentum variation with time.

2. Compute the standard deviation of the momentum psd for blocks of 2,000 successive
particles. Fit this data with a 12th-order polynomial and evaluate it a 10,000 equispaced
points to generate a lookup table for psd as a function of t.

3. Create a histogram of t and smooth it with a low-pass filter having a cutoff at 0.1
THz. This may resulting in ringing at the ends of the histogram, which is clipped off by
masking with the original histogram.

4. Optionally modulate the histogram H(t) with a sinusoid, by multiplying the histogram
by (1 + dm) cos 2πct/λm, where dm is the modulation depth and λm is the modulation
wavelength. For non-zero dm, this will result in a longitudinal-density-modulated distri-
bution when the histogram is used as a probability distribution and sampled to create
time coordinates.

5. Sample the time histogram N times using a “quiet start” Halton sequence with radix 2,
where N is the number of desired particles. The sampling operation is performed by first
numerically computing the cumulative distribution function C(t) =

∫ t
−∞H(t′)dt′/

∫∞
−∞H(t′)dt′.

Inverting this to obtain t(C), we generate each sample from H(t) by evaluating t(U),
where U is a quantity on the interval [0, 1] generated from the Halton sequence.

6. Create samples for other coordinates by quiet-sampling of gaussian distributions:

(a) Scaled transverse coordinates x̂, x̂′, ŷ, and ŷ′ using Halton radices 3, 5, 7, and 11,
respectively. For convenience in scaling (step 9), these are defined such that the
standard deviation of each coordinate is 10−4 and all coordinates are uncorrelated.

(b) Scaled fractional momentum deviation δ1 using Halton radix 13, with unit standard
deviation.

7. Interpolate the look-up tables to determine the mean pmean and standard deviation psd
of the momentum at each particle’s time coordinate. Use these to compute the individual
particle momenta using p = pmean + δ1psd.

8. Compute the projected transverse rms emittances and Twiss parameters for the original
beam.

9. Transform the scaled transverse phase-space coordinates to give the desired projected
Twiss parameters in the x and y planes. The x and y planes are assumed to be uncor-
related.

• synopsis:

smoothDist6 -input name -output name -factor number -rippleAmplitude %

-rippleWavelength microns -smoothPasses num(500) -energyMod % -betaSlices n

175

• files:

– input — A particle distribution file, such as might be used with sdds_beam.

– output — A particle distribution file, such as might be used with sdds_beam.

• switches:

– -factor number — Factor by which to multiply the number of particles.

– -rippleAmplitude value — Density ripple amplitude, in percent.

– -energyMod value — Energy modulation amplitude, in percent. The wavelength is
fixed at 1 µm.

– -rippleWavelength value — Density ripple and energy modulation wavelength, in
microns.

– -betaSlices n — Number of longitudinal slices to use for analysis of twiss parame-
ters. The twiss parameters of the beam will vary step-wise from slice to slice. This
discontinuous variation may cause problems (e.g., unstable behavior).

– -smoothPases num — Presently ignored.

• author: M. Borland, ANL/APS.

• see also: doubleDist6

176

TFBFirSetup

8.21 TFBFirSetup

• description: TFBFirSetup computes FIR (Finite Impulse Response) filter coefficients for
use with TFBDRIVER elements to perform turn-by-turn transverse feedback. The method uses
time-domain least-squares fitting [47].

• examples:

TFBSetup -twiss Basic.twi -pickup XPICKUP -driver XDRIVER -plane x -output

xfb.param -terms 6

• synopsis:

TFBFirSetup -twiss twissFile -pickup elementName -driver elementName -plane

{x|y} -output filename -terms numberOfTerms

• switches:

– -twiss—A twiss parameter file from elegant. The beamline used for the computations
must include a TFBDRIVER and TFBFEEDBACK element for the plane in question.

– -pickup — Specifies the name of the pickup element in the lattice. One and only one
occurrence of the element is required in the twissFile. Note that generally the name of
the pickup should be all uppercase.

– -driver — Specifies the name of the driver element in the lattice. One and only one
occurrence of the element is required in the twissFile. Note that generally the name of
the driver should be all uppercase.

– -plane — Specifies the plane of the feedback.

– -output — Specifies output filename to which FIR configuration is written. The file
should be loaded with load_parameters, e.g.,

&load_parameters

filename = xfb.param,

change_defined_values = 1

&end

– -terms — Number of terms in the filter, between 1 and 30, inclusive.

• author: M. Borland, ANL/APS.

• acknowledgments: H. Shang, C.-Y. Yao.

177

touschekLifetime

8.22 touschekLifetime

• description: touschekLifetime computes Touschek lifetime using A. Piwinski’s formula
[23, 24]. A longitudinally non-Gaussian distributed bunch lifetime (such as ring with harmonic
cavity) can be computed if the bunch profile is inputed through beam option.

• examples:

touschekLifetime aps.life -twiss=aps.twi -aper=aps.aper -part=2e10

-coupling=0.01 -length=6

• synopsis:

touschekLifetime outputFile -twiss=twissFile -aperture=momentumApertureFile

[-beam=beamProfile | -sliceAnalysis=filename] -charge=nC|-particles=value

{-coupling=value|-emityInput=value} -RF=Voltage=MV,harmonic=value[,limit] |

-length=mm [-emitInput=valueInMeters] [-deltaInput=value] [-verbosity=value]

[-ignoreMismatch] [-deltaLimit=valueInPercent] [-method=0|1]

• files: outputFile — Contains resulting Touschek lifetime.

• switches:

– -twiss—A twiss parameter file from elegant. You must use the radiation_integrals
flag in twiss_output.

– -aperture — A momentum aperture file from elegant. This file can contain a subset
of elements of twissFile (for example: only Quadrupole elements). However, the Twiss
and momentum aperture files must cover the same beamline. Having one file for a part
of beamline (e.g., a few sectors) and one for the entire ring will yield incorrect results.

– -beam — Give beam profile file from elegant2genesis. If this option is given, other input
beam parameters are ignored. You can use this option to compute touschek lifetime for
a non-Gaussian longitudinally distributed bunch.

– -sliceAnalysis — Give slice analysis file from the SLICE element in elegant. If this
option is given, other input beam parameters are ignored. You can use this option to
compute touschek lifetime for a non-Gaussian longitudinally distributed bunch.

– -charge, -particles— Give the charge (in nanocoulombs) or the number of electrons.

– -emitInput — Give the initial total emittance in meters (if -coupling is used) or the
initial x emittance in meters (if -emityInput is used).. If not specified, the value from
the parameter ex0 in twissFile is used.

– -coupling — Give the emittance coupling ratio, ǫy/ǫx. This is used to compute the
horizontal and vertical emittance from the natural emittance.

– -emityInput — Give the vertical emittance in meters.

– -deltaInput — Give the initial rms fractional momentum spread. If not specified, the
value from the parameter Sdelta0 in twissFile is used.

178

– -RF=Voltage=MV,harmonic=value[,limit]—Specify rf voltage and harmonic number.
The limit qualifier, if given means that the momentum acceptance is limited by the
bucket half-height. N.B.: If the data files cover only a portion of the ring, using this
option will give incorrect results!

– -length=mm — Specify the rms bunch length. This is an alternative to giving rf param-
eters.

– -verbosity — If nonzero, program execution information is printed to the standard
output.

– -ignoreMismatch — If given, then mismatch of element names between the twiss and
momentum aperture files is ignored. May be useful if there are zero-length elements.

– -deltaLimit— Give the maximum value for the momentum aperture, in percent. If not
specified, the values in the momentum aperture input file are used, possibly altered by the
use of the -RF option with the limit qualifier. If both -deltaLimit and -RF=limit...

are given, the smaller is enforced.

– -method — The integral of Piwinski’s formula can be done in two ways. “0” - direct
integral of parameter τ , this method is also used in elegant. 1 - substitute variable τ
with variable k, with τ = tan2(k). These two methods give you same results.

• Note: If using Pelegant to compute the momentum aperture with output_mode=1, it is
necessary to first run the script reorganizeMmap to put the data into the form needed by
touschekLifetime.

• author: A. Xiao, ANL/APS.

179

view3dGeometry

8.23 view3dGeometry

• description: Allows viewing the 3D geometry of a beamline using the freewrl viewer.

• examples: To generate 3d data and view:

view3dGeometry -rootname aps -showNames ‘‘*QUAD* *BEN*’’ -showCoordinates

‘‘*MON*’’

To view again:

freewrl aps.x3d

• synopsis:

view3dGeometry -rootname string -showNames listOfElementTypes

-showCoordinates listOfElementTypes [-nviewpoints number(10)]

• input files:

– rootname.flr — Contains floor coordinate output from elegant (floor_coodinates
command).

– rootname.param — Contains parameter output from elegant (run_setup command).

• output files: rootname.x3d — Input data to freewrl.

• switches:

– -rootname— Gives the rootname of the run, used to identify the input and output files.

– -showNames—Gives list of element types, with optional wildcards, for which the element
name will be shown in the viewer. Default: “*SBEN*”.

– -showCoordinates — Gives list of element types, with optional wildcards, for which
the local coordinate system will be shown in the viewer. Default: “MARK* WATCH*”.

– nviewpoints — Number of viewpoints to generate and embed in file. Moving between
viewpoints using keystroke commands is easier than “flying” using the keypad.

• author: A. Petrenko, BINP. (Modified by M. Borland.)

180

9 Accelerator and Element Description

As mentioned in the introduction, elegant uses a variant of the MAD input format for describing
accelerators. With some exceptions, the accelerator description for one program can be read by
the other with no modification. Among the differences:

• elegant does not support the use of MAD-style equations to compute the value of a quantity.
The link_elements namelist command can be used for this purpose, and is actually more
flexible than the method used by MAD. Also, rpn-style equations may be given in double-
quotes; these are evaluated once only when the lattice is parsed.

• elegant does not support substitution of parameters in beamline definitions.

• elegant contains many elements that MAD does not have, such as kick elements, wake fields,
and numerically integrated elements.

• The length of an input line is not limited to 80 characters in elegant, as it is in MAD.
However, for compatibility, any lattice created by elegant will conform to this limit.

• The maximum length of the name of an element or beamline is 100 characters.

elegant’s lattice parser translates all input into upper case, except where the input is protected
by double quotes. However, various commands (such as vary element or link elements) that
accept element names as input do not perform any translation. Hence, when referring to element
names in commands, the user must enter the names in upper case unless they are protected by
double quotes in the lattice file.

When the lattice file is very complex, it is sometimes convenient to separate it into several files.
These can then be imported into a main lattice file using the #INCLUDE directive, as in

#INCLUDE: part1.lte

#INCLUDE: part2.lte

The rules for naming elements and beamlines are as follows:

• The name should start with an alphabetic character (i.e., a-z A-Z).

• The name may contain any of the following characters in addition to alphabetic characters
and numbers: ~ @ $ % ^ & - _ + = { } [] \ | / ? < > . : |\verb

• The name should not contain any of the following: # * ! ‘‘ ’ ‘

• The name should not contain spaces, tabs, or non-printing characters.

If using unusual characters in a name, it is a good idea to enclose the name in double quotes. This
is required if : is in the name.

elegant’s print_dictionary command allows the user to obtain a list of names and short
descriptions of all accelerator elements recognized by the program, along with the names, units,
types, and default values of all parameters of each element. The present output of this command
is listed in the next section. The reader is referred to the MAD manual[2] for details on sign
conventions for angles, focusing strength, and so forth.

Comments may be embedded in the lattice file by starting a line with an exclamation point
(“!”). Rpn expressions may be embedded separately from an element definition by starting a line
with a percent sign (“%”). For example

181

! Define Pi (actually "pi" is already defined, but this is just an example)

% 1 atan 4 * sto Pi

% Pi 40 / sto myAngle

! Define a rectangular bend for a ring with 80 equal bends

B1: SBEN,L=1.0,ANGLE="myAngle",E1="myAngle 2 /",E2="myAngle 2 /"

Note that to use an RPN expression the value of a parameter, one must enclose the expression in
double quotes.

9.1 Magnet Strength

There are many conventions for specifying magnetic fields in terms of a multipole, polynomial, or
Taylor expansion, which leads to potential confusion. In elegant (as in MAD[2]), magnet strengths
are specified in terms of Taylor series. For normal multipoles and y = 0, the expansion is

By(x, 0) =

∞
∑

n=0

Bnx
n

n!
, (12)

where B0 is the dipole, B1 is the quadrupole, etc. In general,

Bn =

(

∂nBy

∂xn

)

x=y=0

. (13)

elegant follows MAD [2] in using a right-handed coordinate system (x, y, z) in which z is along
the beam direction, x is to the left, and y is up.

This expansion for the normal multipole terms can be related to a multipole expansion that
includes both normal and skew components. In this convention, positive normal multipole coeffi-
cients give positive By for x > 0 and y = 0. Rotating a positive normal multipole with N poles π/N
clockwise about the vector along the beam direction will convert it into a positive skew multipole.
As a result, for a positive skew multipole, By will be non-negative and Bx will be negative for x > 0
along the line φ = π/N .

We can satisfy these conventions if we write the scalar potential as

V =

∞
∑

n=1

iAn−1 −Bn−1

n!
(x+ iy)ne−in∆φ, (14)

where, as we’ll see, Am are skew components and Bm are normal components for a 2(m+ 1)-pole.
The coordinates (x, y) are in a right-handed system with the longitudinal coordinate z. ∆φ is the
rotation angle of the magnet, where a clockwise rotation about the nominal trajectory corresponds
to ∆φ > 0. The minus sign in e−in∆φ is because we rotate the magnet while keeping the coordinate
system fixed.

The magnetic fields are

By = −ℑ∂V

∂y
= ℑ

∞
∑

n=0

An + iBn

n!
(x+ iy)ne−i(n+1)∆φ, (15)

and

Bx = −ℑ∂V

∂x
= ℑ

∞
∑

n=0

−iAn +Bn

n!
(x+ iy)ne−i(n+1)∆φ, (16)

182

We can relate the coefficients to the Bm quantities used in MAD and elegant by noting that for
∆φ = 0

Bm =

(

∂mBy

∂xm

)

x=y=0

(17)

and

Am = −
(

∂mBx

∂xm

)

x=y=0

(18)

Note the minus sign in the last equation, which differs from commonly asserted conventions.
Multipole errors are typically specified as fractions of the main field harmonic at a reference

radius R, e.g.,

Fn =
KnR

n/n!

KmRm/m!
, (19)

where m is the main harmonic and n is the error harmonic.
For electrons, the deflection from a thin element is

θ(x, y = 0) =
1

H

∫

B(x, y = 0)dl, (20)

where H = Bρ = −p/e is the beam rigidity and p = mecβγ is the momentum. The geometric
strengths Kn are defined as

Kn =
Bn

H
. (21)

By convention in elegant, a positive Kn value deflects a particle at x > 0 toward x = 0. E.g., a
positive K1 value indicates a horizontally focusing quadrupole.

183

10 Element Dictionary

184

ALPH

10.1 ALPH—An alpha magnet implemented as a matrix, up to 3rd order.

An alpha magnet implemented as a matrix, up to 3rd order.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

XMAX M double 0.0 size of alpha

XS1 M double 0.0 inner scraper position relative
to XMAX

XS2 M double 0.0 outer scraper position relative
to XMAX

DP1 double -1 inner scraper fractional mo-
mentum deviation

DP2 double 1 outer scraper fractional mo-
mentum deviation

XPUCK M double -1 position of scraper puck

WIDTHPUCK M double 0.0 size of scraper puck

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

TILT double 0.0 rotation about incoming longi-
tudinal axis

PART short 0 0=full, 1=first half, 2=second
half

ORDER short 0 matrix order [1,3]

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element provides a matrix-based implementation of an alpha magnet [5]. Matrices up to
third order are available [4].

The parameter XMAX determines the size of the alpha, which is related to the gradient g in the
magnet and the central momentum βγ by

xmax[m] = 0.07504986

√

βγ

g[T/m]
. (22)

The path length of the central particle is 2.554xmax.
Because an alpha magnet has large dispersion at the midplane, it is often used for momentum

filtration in addition to bunch compression. The dispersion at the center is given by the simple

185

relation

R16 = −1

2
xmax. (23)

To use an alpha magnet for momentum filtration in elegant, one must split the alpha magnet into
two pieces. One may then either use the scraper features of the ALPH element or other elements
such as SCRAPER or RCOL.

To split an alpha magnet, one uses the PART parameter. E.g.,

! First half, with momentum filter between -5% and +2.5%

AL1: ALPH,XMAX=0.11,PART=1,DP1=-0.05,DP2=0.025

! Second half

AL2: ALPH,XMAX=0.11,PART=2

AL: LINE=(AL1,AL2)

As just illustrated, the parameters DP1 and DP2 may be used to filter the momentum by pro-
viding fractional momentum deviation limits. These are implemented in a physical fashion by
computing the corresopnding horizontal position deviations and imposing these as limits on the
particle coordinates. One may also do this directly using the XS1 and XS2 parameters, which
specify maximum acceptable deviations from the nominal horizontal position. XS1 is the allowed
deviation on the low-energy side while XS2 is the allowed deviation on the high-energy side.

186

APCONTOUR

10.2 APCONTOUR—An aperture (or its inverse) defined by (x, y) points in
an SDDS file.

An aperture (or its inverse) defined by (x, y) points in an SDDS file.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

RESOLUTION M double 0.0 z resolution of finding intersec-
tion

INVERT long 0 if non-zero, contour defines
an obstruction rather than an
aperture

FILENAME STRING NULL name of file containing contour
data

XCOLUMN STRING NULL name of column containing x
data

YCOLUMN STRING NULL name of containing y data

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

187

BGGEXP

10.3 BGGEXP—A magnetic field element using generalized gradient expan-
sion.

A magnetic field element using generalized gradient expansion.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no

188

Parameter Name Units Type Default Description

L M double 0.0 insertion length

LFIELD M double -1 expected length of the field
map. If negative, use L.

FILENAME NULL STRING NULL name of file generalized gradi-
ent data

STRENGTH NULL double 1 factor by which to multiply
field

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

BX T double 0.0 add BX*STRENGTH to Bx
field

BY T double 0.0 add BY*STRENGTH to By
field

MAXIMUM M short -1 data with m greater than this
is ignored

MAXIMUM 2N short -1 data with 2*n greater than
this is ignored

Z INTERVAL short 1 input z data is sampled at this
interval

SYMPLECTIC short 0 if nonzero, use implicit sym-
plectic integrator. At mini-
mum, should always be used to
validate the sufficiency of the
non-symplectic integrator.

SYNCH RAD short 0 if nonzero, include classical,
single-particle synchrotron ra-
diation

ISR short 0 if nonzero, include incoherent
synchrotron radiation (quan-
tum excitation)

PARTICLE OUTPUT FILE STRING NULL name of file for phase-space
and field output. Use for de-
bugging only!

IS BEND short 0 if nonzero, magnet is a bend-
ing magnet; vertex, entry, and
exit points should be defined.

189

BGGEXP continued

A magnetic field element using generalized gradient expansion.
Parameter Name Units Type Default Description

XVERTEX M double 0.0 For dipoles: x position of ver-
tex in coordinate system of the
fields.

ZVERTEX M double 0.0 For dipoles: z position of ver-
tex in coordinate system of the
fields.

XENTRY M double 0.0 For dipoles: x position of refer-
ence entry point in coordinate
system of the fields.

ZENTRY M double 0.0 For dipoles: z position of refer-
ence entry point in coordinate
system of the fields.

XEXIT M double 0.0 For dipoles: x position of ref-
erence exit point in coordinate
system of the fields.

ZEXIT M double 0.0 For dipoles: z position of ref-
erence exit point in coordinate
system of the fields.

DXEXPANSION M double 0.0 x position of expansion rela-
tive to coordinate system of
the fields.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates transport through a 3D magnetic field specified in terms of a generalized
gradient expansion [50]. After reconstructing the field, it simply integrates the equations of motion
based on the Lorentz force equation in cartesian coordinates.

The generalized gradients are provided in an SDDS file with the following floating-point columns:

• z — Longitudinal coordinate. Units should be “m”.

• Cnmn — The nth generalized gradient of the mth harmonic, where n = 0, 2, 4, There is
no preset limit to the number of generalized gradients. Units are ignored, but should be SI.

• dCnmn/dz — The longitudial derivative of the nth generalized gradient, for the mth har-
monic, where n = 0, 2, 4, The number of derivatives must match the number of generalized
gradients Cnmn.

In addition, the file must contain a parameter:

190

• m — The multipole index, using the convention where m = 1 is dipole, m = 2 is quadrupole,
etc. N.B.: this convention conforms with [50] but is not the usual one used by elegant. This
should be stored as a short integer. N. B.: for m = 1, if the system has net bending, the
results will not be correct as the required coordinate transformations are not performed.

The generalized gradient file can be prepared using the script computeGeneralizedGradients,
which is provided with elegant. The input file for that script must be organized into many pages,
with each page giving Br(φ) on radius r = R for a single z location. The file must contain two
floating-point columns:

• phi — The angle, in radians. φ = 0 corresponds to x = R and y = 0, while φ = π/2
corresponds to x = 0 and y = R. It is assumed that φ runs from 0 to 2π−∆φ in steps of ∆φ.

• Br — The radial field at the reference radius R, Tesla.

In addition, the file must contain two floating-point parameters:

• R — The radius, in meters.

• z — The longitudinal coordinate, in meters. z should extend from the zero-field region
upstream of the magnet to the zero-field region downstream of the magnet.

Synchrotron radiation can be included by setting SYNCH_RAD=1 for classical radiation only and
also ISR=1 for incoherent (quantum) effects. This will impact the results of moments_output

calculation as well as tracking.
Important notes and limitations:

1. The calculations of twiss_output, including radiation integrals, are at this point not affected,
nor is the setup of rf cavities for storage rings via the rf_setup command.

2. The symplectic integrator, in addition to being symplectic, is typically more accurate than the
non-symplectic integrator. It is also considerably slower. However, at minimum, users should
use the symplectic integrator to verify that the accuracy of the non-symplectic integrator is
adequate.

3. The BX and BY parameters allow imposing uniform horizontal and vertical magnetic fields on
the device. This can be helpful if the terminal trajectory deviates from the expected value,
e.g., an on-axis particle ends up off-axis. This may happen if the device has a dipolar field
that is truncated at the ends before it has decayed sufficiently. Note that these values are
multiplied by the STRENGTH factor before being applied to the beam.

If IS_BEND is non-zero, the magnet is assumed to be a bending magnet, in which case additional
parameters are required.

• ZVERTEX, XVERTEX — Coordinates of the vertex point in coordinate frame of the field data.
For a symmetric dipole, ZVERTEX is typically zero, while XVERTEX would be the displacement
of the vertex point from the cylinder axis.

• ZENTRY, XENTRY — Coordinates of the nominal entry plane.

• ZEXIT, XEXIT — Coordinates of the nominal exit plane.

191

BMAPXY

10.4 BMAPXY—A map of Bx and By vs x and y.

A map of Bx and By vs x and y.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

STRENGTH NULL double 0.0 factor by which to multiply
field

ACCURACY NULL double 0.0 integration accuracy

METHOD NULL STRING NULL integration method (runge-
kutta, bulirsch-stoer,
modified-midpoint, two-pass
modified-midpoint, leap-frog,
non-adaptive runge-kutta

FILENAME NULL STRING NULL name of file containing
columns (x, y, Fx, Fy) giving
normalized field (Fx, Fy) vs
(x, y)

FX NULL STRING NULL rpn expression for Fx in terms
of x and y

FY NULL STRING NULL rpn expression for Fy in terms
of x and y

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates transport through a transverse magnetic field specified as a field map.
It does this by simply integrating the Lorentz force equation in cartesian coordinates. It does not
incorporate changes in the design trajectory resulting from the fields. I.e., if you input a dipole
field, it is interpreted as a steering element.

The field map file is an SDDS file with the following columns:

• x, y — Transverse coordinates in meters (units should be “m”).

• Fx, Fy — Normalized field values (no units). The field is multiplied by the value of the
STRENGTH parameter to convert it to a local bending radius. For example, if Fx=y and
Fy=x, then STRENGTH is the K1 quadrupole parameter.

• Bx, By — Field values in Tesla (units should be “T”). The field is still multiplied by the
value of the STRENGTH parameter, which is dimensionless. Note: the default value of
STRENGTH is 0, so if you don’t set it to something, you’ll get no effect!

192

The field map file must contain a rectangular grid of points, equispaced (separately) in x and
y. There should be no missing values in the grid (this is not checked by elegant). In addition, the
x values must vary fastest as the values are accessed in row order. To ensure that this is the case,
use the following command on the field file:

sddssort fieldFile -column=y,incr -column=x,incr

193

BMXYZ

10.5 BMXYZ—A map of (Bx, By, Bz) vs (x, y, z), for straight elements only

A map of (Bx, By, Bz) vs (x, y, z), for straight elements only
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 insertion length

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

TILT RAD double 0.0 rotation about longitudinal
axis

LFIELD M double -1 expected length of the field
map. If negative, determined
from field data.

STRENGTH NULL double 1 factor by which to multiply
field

ACCURACY NULL double 0.0 integration accuracy

METHOD NULL STRING NULL integration method (runge-
kutta, bulirsch-stoer,
modified-midpoint, two-pass
modified-midpoint, leap-frog,
non-adaptive runge-kutta

FILENAME NULL STRING NULL name of file containing
columns (x, y, z) and either
(Bx, By, Bz) or (Fx, Fy, Fz)

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

CHECK FIELDS short 0 check fields by computing
divB and curlB errors?

INJECT AT Z0 short 0 By default, particles are
placed at the entrance to the
field map regardless of the z
coordinate values. If nonzero,
particles start at z=0.

DRIFT MATRIX short 0 If non-zero, instead of tracking
to determine the matrix, just
assume a drift-space matrix.

PARTICLE OUTPUT FILE NULL STRING NULL name of file for phase-space
output inside element. Use for
debugging only in serial ver-
sion.

194

BMXYZ continued

A map of (Bx, By, Bz) vs (x, y, z), for straight elements only

Parameter Name Units Type Default Description

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates transport through a 3D magnetic field specified as a field map. It
does this by simply integrating the Lorentz force equation in cartesian coordinates. It does not
incorporate changes in the design trajectory resulting from the fields. I.e., if you input a dipole
field, it is interpreted as a steering element.

The field map file is an SDDS file with the following columns:

• x, y, x — Transverse coordinates in meters (units should be “m”).

• Fx, Fy, Fx — Normalized field values (no units). The field is multiplied by the value of
the STRENGTH parameter to convert it to a local bending radius. For example, an ideal
quadrupole could be simulated by setting (Fx=y, Fy=x, Fz=0), in which case STRENGTH
is the K1 quadrupole parameter.

• Bx, By, Bz — Field values in Tesla (units should be “T”). The field is still multiplied by
the value of the STRENGTH parameter, which is dimensionless.

The field map file must contain a rectangular grid of points, equispaced (separately) in x, y,
and z. There should be no missing values in the grid (this is not checked by elegant). In addition,
the x values must vary fastest as the values are accessed in row order, then the y values. To ensure
that this is the case, use the following command on the field file:

sddssort fieldFile -column=z,incr -column=y,incr -column=x,incr

This element is an alternative to FTABLE using a more conventional integration method.

195

BOFFAXE

10.6 BOFFAXE—A straight magnetic field element using off-axis expansion
from an on-axis derivative.

A straight magnetic field element using off-axis expansion from an on-axis derivative.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no

196

Parameter Name Units Type Default Description

L M double 0.0 insertion length

LFIELD M double -1 expected length of the field
map for verification purposes
only.

FILENAME NULL STRING NULL name of file containing deriva-
tive data

Z COLUMN NULL STRING z name of longitunidal coordi-
nate column in the data file

FIELD COLUMN NULL STRING NULL name of derivative column in
the data file

ORDER short 1 order of transverse derivative

EXPANSION ORDER short 0 order of expansion in x and y.
If zero, determined by data in
file.

STRENGTH NULL double 1 factor by which to multiply
field

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

BX T double 0.0 add BX*STRENGTH to Bx
field

BY T double 0.0 add BY*STRENGTH to By
field

Z INTERVAL short 1 input z data is sampled at this
interval

Z SUBDIVISIONS short 1 Number of subdivisions of z in-
terval to use in integration

SYNCH RAD short 0 if nonzero, include classical,
single-particle synchrotron ra-
diation

ISR short 0 if nonzero, include incoherent
synchrotron radiation (quan-
tum excitation)

PARTICLE OUTPUT FILE STRING NULL name of file for phase-space
and field output. Use for de-
bugging only!

197

BOFFAXE continued

A straight magnetic field element using off-axis expansion from an on-axis derivative.
Parameter Name Units Type Default Description

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This somewhat experimental element simulates transport through a 3D magnetic field con-
structed from an off-axis expansion. At present, it is restricted to non-bending elements and in fact
to quadrupoles.

This method of expanding the fields is prone to corruption by noise, to a much greater degree
than the generalized gradient expansion used by BGGEXP. However, it uses data that can very readily
be obtained from magnetic measurements with a Hall probe. Users are cautioned to take care in
deciding how far to trust the expansion.

For quadrupoles, we use the on-axis gradient g(z) and its z derivatives g(n)(z) The scalar
potential can be written

Φ =
x5y5g(8)(z)

86400
−g(6)(z)

(

x5y3 + x3y5
)

4320
+

1

720
g(4)(z)

(

x5y + xy5
)

+
1

108
x3y3g(4)(z)− 1

12

(

x3y + xy3
)

g′′(z)+xyg(z)

(24)
From which we find

Bx =
x4y5g(8)(z)

17280
−g(6)(z)

(

5x4y3 + 3x2y5
)

4320
+

1

720
g(4)(z)

(

5x4y + y5
)

+
1

36
x2y3g(4)(z)− 1

12

(

3x2y + y3
)

g′′(z)+yg(z)

(25)

By =
x5y4g(8)(z)

17280
−g(6)(z)

(

3x5y2 + 5x3y4
)

4320
+

1

720
g(4)(z)

(

x5 + 5xy4
)

+
1

36
x3y2g(4)(z)− 1

12

(

x3 + 3xy2
)

g′′(z)+xg(z)

(26)
and

Bz =
x5y5g(9)(z)

86400
−g(7)(z)

(

x5y3 + x3y5
)

4320
+

1

720
g(5)(z)

(

x5y + xy5
)

+
1

108
x3y3g(5)(z)− 1

12
g(3)(z)

(

x3y + xy3
)

+xyg′(z)

(27)
These equations satisfy Maxwell’s curl equation exactly while satisfying the divergence equation to
10th order.

The gradient g(z) is specified in the column named by the FIELD_COLUMN parameter. The
names for the columns containing z derivatives of g(z) are constructed from the name of the
gradient. Assume for concreteness that FIELD_COLUMN="Gradient". elegant looks for g(1)(z) in
column GradientDeriv and g(n)(z) for n > 1 in columns GradientDeriv2, GradientDeriv3, etc.
Even if the expansion is limited by the ORDER parameter, all gradients will be used for interpolation
with respect to z if the Z_SUBDIVISIONS parameter is larger than 1. The expansion is truncated if
the needed columns do not exist in the input file.

The needed derivatives can be obtained using the program sddsderiv, e.g.,

198

sddsderiv gradient.sdds gradient1.sdds -differ=Gradient -versus=z -savitzky=7,7,7,1

sddsderiv gradient.sdds gradient2.sdds -differ=Gradient -versus=z -savitzky=7,7,7,2

sddsderiv gradient.sdds gradient3.sdds -differ=Gradient -versus=z -savitzky=7,7,7,3

sddsxref gradient.sdds gradient[123].sdds gradients.sdds -take=*Deriv*

(In this example, we use a Savitzky-Golay filter to compute the first three z derivatives of g(z) using
a 7th order fit with 7 points ahead of and behind the evaluation location.) The file gradients.sdds
would then be given as the value of FILENAME.

High-order numerical derivative are of course prone to corruption by measurement noise. Ex-
amining the derivatives is strongly recommended to ensure this is not an issue.

199

BRANCH

10.7 BRANCH—Conditional branch instruction to jump to another part of the
beamline

Conditional branch instruction to jump to another part of the beamline
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

COUNTER long 0 Counter, which is decremented
by 1 for each pass. Set to neg-
ative value for unconditional
branch.

INTERVAL long 0 Interval between branching. If
non-positive, use COUNTER-
based method instead.

OFFSET long 0 If INTERVAL method used,
offset of branch passes.

VERBOSITY long 0 Larger values result in more
output during running.

DEFAULT TO ELSE long 0 If non-zero, defaults to
ELSE TO when performing
tracking for closed orbit,
twiss output, etc.

BRANCH TO STRING NULL Optional name of element to
which to jump when counter is
non-positive.

ELSE TO STRING NULL Optional name of element to
which to jump when counter is
positive.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is experimental and should be used with care. It may not work well with other
features, e.g., orbit correction or twiss parameter output. It should work well with tracking.

The element permits switching tracking between two segments of a beamline. This can be done
once per run or periodically. For the former, the COUNTER parameter should be used to specify the
pass number (which is zero on the first pass) on which to branch. For the latter, the INTERVAL i
and (optionally) OFFSET o parameters should be used; the branch will occur when (p− o)%i == 0.

The application that inspired creation of this element is to switch from tracking using lumped
elements to tracking using element-by-element methods. More specifically, imagine we want to

200

track for 10,000 turns to reach an equilibrium, then perform a beam abort. The equilibrium state
can be accurately and rapidly modeled using lumped elements, such as ILMATRIX and SREFFECTS,
but the beam abort needs to be modeled using comparatively slow element-by-element tracking.

RING1: ILMATRIX,...

SR1: SREFFECTS,...

...

RINGFULL: line=(SECTOR1, SECTOR2, ..., SECTOR40)

M1: MARK

M2: MARK

RF: RFCA,...

BR1: BRANCH,COUNTER=10000,BRANCH_TO="M1"

BR2: BRANCH,COUNTER=-1,BRANCH_TO="M2"

BL: line=(BR1,RING1,SR1,M1,RINGFULL,M2,RF)

Another application is to model a periodic bypass, e.g.,

RINGA: line=(...)

RINGB: line=(...)

RINGC: line=(...)

BYPASS: line=(...)

M1: MARK

M2: MARK

BR1: BRANCH,INTERVAL=100,BRANCH_TO="M1",ELSE_TO="M2"

BR2: BRANCH,COUNTER=-1,BRANCH_TO="M3"

BL: line=(RINGA,BR1,M1,BYPASS,BR2,M2,RINGB,M3,RINGC)

In this example, the full ring is composed of three sections, RINGA, RINGB, and RINGC. Every 100
passes, the RINGB portion is bypassed in favor of BYPASS.

201

BRAT

10.8 BRAT—Bending magnet RAy Tracing using (Bx, By, Bz) vs (x, y, z).

Bending magnet RAy Tracing using (Bx, By, Bz) vs (x, y, z).
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

ANGLE RAD double 0.0 Nominal bending angle. Will
be refined to match geometry
specified by input/output and
vertex coordinates

FSE NULL double 0.0 fractional strength error

ACCURACY NULL double 0.0 integration accuracy

METHOD NULL STRING NULL Ignored. Method defaults to
Bulirsch-Stoer.

FILENAME NULL STRING NULL name of file containing
columns (x, y, z, Bx, By, Bz)

XVERTEX M double 0.0 x coordinate of vertex point

ZVERTEX M double 0.0 z coordinate of vertex point

XENTRY M double 0.0 x coordinate of nominal entry
point

ZENTRY M double 0.0 z coordinate of nominal entry
point

XEXIT M double 0.0 x coordinate of nominal exit
point

ZEXIT M double 0.0 z coordinate of nominal exit
point

DXMAP M double 0.0 x displacement of map

DZMAP M double 0.0 z displacement of map

YAWMAP RAD double 0.0 yaw of map about x=z=0

FACTOR double 1 factor by which to multiply
fields

USE FTABLE short 0 If nonzero, use FTABLE
method for integration. Value
gives the number of kicks.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

Bending magnet RAy Tracing using (Bx, By, Bz) vs (x, y, z). This element is a companion

202

to the commandline program abrat. It integrates through a 3-D field map for a bending magnet,
including coordinate transformations. No synchrotron radiation calculations are included at this
time.

Coordinates
The coordinates of the field map are right-handed system (x, y, z), where z is along the length

of the magnet, x is to the right as viewed along the direction of beam propagation, and y is up.
The user must specify the (x, z) coordinates of three points:

• Nominal entrance point: XENTRY and ZENTRY. These give the coordinates of reference trajec-
tory at the exit of the previous element. In the limit of a hard-edge model, this would be at
the entrance to the magnetic field region.

• Vertex point: XVERTEX and ZVERTEX. These give the coordinates of vertex point, which is the
intersection of the reference lines from the entrance and exit.

• Nominal exit point: XEXIT and ZEXIT. These give the coordinates of reference trajectory at
the exit of the previous element. In the limit of a hard-edge model, this would be at the exit
from the magnetic field region.

The bending angle is equal to the angle between two lines: the line from ENTRY to VERTEX and the
line from VERTEX to EXIT. The L and ANGLE parameters supplied by the user are used for geometry
calculations (e.g., floor coordinates) only.

The DXMAP, DZMAP, YAWMAP, and FSE values can be used to optimize the field map to ensure that
the horizontal reference trajectory is not displaced at the exit of the element. The optimization
feature of the abrat program can be used to determine these values.

Matrix generation
elegant will use tracking to determine the transport matrix for BRAT elements, which is needed

for computation of twiss parameters and other operations. This can require some time, so elegant

will cache the matrices and re-use them for identical elements.
Integration methods
The original (and default) integration method is Bulirsch-Stoer integration of the Lorentz force

equation. As an alternative, one can use the faster, rotation-based method of the FTABLE element.
For repeated use, the two methods should be compared and a choice made based on the user’s
needs.

Limitations
Floor coordinates are incorrect following a BRAT element.

203

BUMPER

10.9 BUMPER—A time-dependent kicker magnet with optional spatial depen-
dence of the kick and no fringe effects. The waveform is in SDDS format,
with time in seconds and amplitude normalized to 1. The optional spatial
dependence is also specified as an SDDS file.

A time-dependent kicker magnet with optional spatial dependence of the kick and no fringe effects.
The waveform is in SDDS format, with time in seconds and amplitude normalized to 1. The
optional spatial dependence is also specified as an SDDS file.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

ANGLE RAD double 0.0 kick angle

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

B2 1/M2 double 0.0 Sextupole term:
By=Bo*(1+b2*x2̂)

TIME OFFSET S double 0.0 time offset of waveform

PERIODIC long 0 is waveform periodic?

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

FIRE ON PASS long 0 pass number to fire on

N KICKS long 0 Number of kicks to use for sim-
ulation. 0 uses an exact result
but ignores b2.

WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing kick factor vs time

DEFLECTION MAP STRING NULL optional filename giving the
spatial variation of the deflec-
tion

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a time-dependent kicker magnet as a rectangular dipole with no fringe

204

field effects. To use this element, you must supply an SDDS file giving the time-dependent wave-
form. The element is called BUMPER to because HKICK, VKICK, KICKER are used for steering magnets.

The arrival time of the beam is taken to define the reference time, t = 0. Hence, if the waveform
file has the maximum amplitude at t = 0, the beam will get kicked at the peak of the waveform.
If the waveform peaks at t = tpeak, then setting TIME_OFFSET equal to −tpeak will ensure that the
beam is kicked at the peak amplitude.

By default, the kicker fires on the first beam passage. However, if FIRE_ON_PASS is used, then
the kicker is treated like a drift space until the specified pass.

If PHASE_REFERENCE is non-zero, then the initial timing is taken from the first time-dependent
element that has the same PHASE_REFERENCE value. This would allow, for example, simulating
several kickers firing at the same time. Delays relative to this reference time can then be given with
positive adjustments to TIME_OFFSET.

The waveform input file need not have equispaced points in time. However, the time values
should increase monotonically.

The deflection map, if provided, should have four floating-point columns

1. Transverse coordinates x and y, with units of m.

2. Kick multipliers xpFactor and ypFactor, which are dimensionless quantities.

The resulting kick in each plane for a particle with coordinates (x, y, t, δ) is

∆q′(x, y, t, δ) =
θA(t)fq(x, y)

1 + δ
, (28)

where q stands for x or y, θ is the specfied deflection angle, A(t) is the time-dependent amplitude
waveform, and fq(x, y) is the deflection map factor for the q plane at the particle’s location.

The data in the deflection map file must be sorted so that x changes fastest, which can be
accomplished using the command

sddssort input.sdds -column=y,incr -column=x,incr

This element simulates a dipole kicker only. For multipole kickers, see the MBUMPER element.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use
of data from external files to provide input waveforms. The external files are SDDS files, which
may have many columns. In order to provide a convenient way to specify both the filename and
the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value.
For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A

will be taken from file waveform.sdds. The first column is always the independent variable (e.g.,
time, position, or frequency), while the second column is the dependent quantity.

205

CCBEND

10.10 CCBEND—A canonically-integrated straight dipole magnet, assumed to
have multipoles defined in Cartesian coordinates.

A canonically-integrated straight dipole magnet, assumed to have multipoles defined in Cartesian
coordinates.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 arc length (not chord length!)

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric quadrupole strength

K2 1/M3 double 0.0 geometric sextupole strength

K3 1/M4 double 0.0 geometric octupole strength

K4 1/M5 double 0.0 geometric decapole strength

K5 1/M6 double 0.0 geometric 12-pole strength

K6 1/M7 double 0.0 geometric 14-pole strength

K7 1/M8 double 0.0 geometric 16-pole strength

K8 1/M9 double 0.0 geometric 18-pole strength

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

YAW RAD double 0.0 rotation about vertical axis
through entrance point

HGAP M double 0.0 half-gap between poles

FINT1 double 0.0 edge integral for entrance

FINT2 double 0.0 edge integral for exit

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

FSE DIPOLE double 0.0 fractional strength error of
dipole component

FSE QUADRUPOLE double 0.0 fractional strength error of
quadrupole component

ETILT RAD double 0.0 error rotation about incoming
longitudinal axis

N KICKS long 4 number of kicks

INTEGRATION ORDER short 4 integration order (2 or 4)

SYSTEMATIC MULTIPOLES STRING NULL input file for systematic multi-
poles

EDGE MULTIPOLES STRING NULL input file for systematic en-
trance/exit edge multipoles

206

CCBEND continued

A canonically-integrated straight dipole magnet, assumed to have multipoles defined in Cartesian
coordinates.
Parameter Name Units Type Default Description

EDGE1 MULTIPOLES STRING NULL input file for systematic en-
trance edge multipoles. Over-
rides EDGE MULTIPOLES.

EDGE2 MULTIPOLES STRING NULL input file for systematic exit
edge multipoles. Overrides
EDGE MULTIPOLES.

RANDOM MULTIPOLES STRING NULL input file for random multi-
poles

SYSTEMATIC MULTIPOLE FACTOR double 1 Factor by which to multiply
systematic and edge multi-
poles

RANDOM MULTIPOLE FACTOR double 1 Factor by which to multiply
random multipoles

REFERENCE ORDER short 0 Reference order for multipole
errors. Overridden by value
in multipole files, if those are
given.

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

ISR1PART short 1 Include ISR for single-particle
beam only if ISR=1 and
ISR1PART=1

USE RAD DIST short 0 If nonzero, overrides
SYNCH RAD and ISR,
causing simulation of ra-
diation from distributions,
optionally including opening
angle.

ADD OPENING ANGLE short 1 If nonzero, radiation open-
ing angle effects are added if
USE RAD DIST is nonzero.

OPTIMIZE FSE short 1 Optimize strength (FSE) to
obtain the ideal deflection an-
gle.

207

CCBEND continued

A canonically-integrated straight dipole magnet, assumed to have multipoles defined in Cartesian
coordinates.
Parameter Name Units Type Default Description

OPTIMIZE DX short 1 Optimize x offset to obtain
centered trajectory.

OPTIMIZE FSE ONCE short 0 If nonzero, the FSE off-
set is optimized only once,
even if relevant parameters are
changed.

OPTIMIZE DX ONCE short 0 If nonzero, the x offset is opti-
mized only once, even if rele-
vant parameters are changed.

COMPENSATE KN short 0 If nonzero, K1 and K2
strengths are adjusted to
compensate for the changes
in FSE needed to center the
trajectory.

EDGE ORDER short 3 Gives order of edge effects.
Does not affect edge multi-
poles.

VERBOSE short 0 If nonzero, print messages
showing optimized FSE and x
offset.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element provides a symplectic straight-pole, bending magnet with the exact Hamiltonian
in Cartesian coordinates. The quadrupole, sextupole, and other multipole terms are defined in
Cartesian coordinates. The magnet at present is restricted to having rectangular ends with sym-
metric entry and exit. This is quite different from CSBEND, where the edge angles are user-defined
and where the field expansion is in curvilinear coordinates. Strictly speaking, CSBEND is only valid
when the dipole is built with curved, beam-following poles.

Integration of particles in CCBEND is very similar to what’s done for KQUAD, KSEXT, and KOCT.
The only real difference is that coordinate transformations are performed at the entrance and exit
to orient the incoming central trajectory to the straight magnet axis. In addition, the fractional
strength error is adjusted to ensure that the outgoing central trajectory is correct.

By default, two adjustments are made at start-up and whenever the length, angle, gradient, or
sextupole term change:

1. The fractional strength error is altered to ensure the correct deflecting angle. This is required
because the bending field varies along the trajectory. By default, this affects all field compo-

208

nents together, per the usual convention in elegant. To restrict the strength change to the
dipole term, set COMPENSATE_KN=1. To turn off this optimization, set OPTIMIZE_FSE=0.

2. The transverse position is adjusted to center the trajectory in the magnet. If the sagitta is
σ and ANGLE is positive, the initial and final x coordinates are x = −σ/2, while the center
coordinate is x = σ/2. To turn off this optimization, set OPTIMIZE_DX=0.

One can block the re-optimization of these parameters by setting OPTIMIZE_FSE_ONCE and OPTIMIZE_DX_ONCE
to 1. Note also that the optimization is performed with all error-defining parameters (DX, DY, DZ,
FSE, and ETILT) set to zero.

Edge angles and edge effects
The edge angle treatment in CCBEND is relatively simple, consisting of a vertical focusing effect

with momentum dependence to all orders. Also included are edge pseudo-sextupoles (due to the
body K1 term) and pseudo-octupoles (due to the body K2 term). The user may also specify edge
multipoles using the EDGE_MULTIPOLE parameter.

Multipole errors
Multipole errors are specified for the body and edge in the same fashion as for the KQUAD element.

The reference is the dipole field by default, but this may be changed using the REFERENCE_ORDER

parameter.
Radiation effects
Incoherent synchrotron radiation, when requested with ISR=1, normally uses gaussian distri-

butions for the excitation of the electrons. Setting USE RAD DIST=1 invokes a more sophisticated
algorithm that uses correct statistics for the photon energy and number distributions. In addition,
if USE RAD DIST=1 one may also set ADD OPENING ANGLE=1, which includes the photon angular
distribution when computing the effect on the emitting electron.

Adding errors
When adding errors, care should be taken to choose the right parameters. The FSE and ETILT

parameters are used for assigning errors to the strength and alignment relative to the ideal values
given by ANGLE and TILT. One can also assign errors to ANGLE and TILT, but this has a different
meaning: in this case, one is assigning errors to the survey itself. The reference beam path changes,
so there is no orbit/trajectory error. The most common thing is to assign errors to FSE and ETILT.
Note that when adding errors to FSE, the error is assumed to come from the power supply, which
means that multipole strengths also change.

Splitting dipoles
The CCBEND element does not support splitting. Important: Users should not attempt to split

CCBEND elements by hand, since this will not result in the correct geometry entering and exiting
the various parts.

Matrix generation
elegant will use tracking to determine the transport matrix for CCBEND elements, which is

needed for computation of twiss parameters and other operations. This can require some time, so
elegant will cache the matrices and re-use them for identical elements.

209

CENTER

10.11 CENTER—An element that centers the beam transversely on the ideal
trajectory.

An element that centers the beam transversely on the ideal trajectory.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

X long 1 center x coordinates?

XP long 1 center x’ coordinates?

Y long 1 center y coordinates?

YP long 1 center y’ coordinates?

S long 0 center s coordinates?

DELTA long 0 center delta coordinates?

T long 0 center t coordinates?

ONCE ONLY long 0 compute centering offsets for
first beam only, apply to all?

ON PASS long -1 If nonnegative, do centering on
the nth pass only.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

210

CEPL

10.12 CEPL—A numerically-integrated linearly-ramped electric field deflector.

A numerically-integrated linearly-ramped electric field deflector.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

RAMP TIME S double 1e-09 time to ramp to full strenth

TIME OFFSET S double 0.0 offset of ramp-start time

VOLTAGE V double 0.0 maximum voltage between
plates due to ramp

GAP M double 0.01 gap between plates

STATIC VOLTAGE V double 0.0 static component of voltage

TILT RAD double 0.0 rotation about longitudinal
axis

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

N STEPS long 100 number of steps (for nonadap-
tive integration)

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

211

CHARGE

10.13 CHARGE—An element to establish the total charge of a beam. Active
on first pass only. If given, overrides all charge specifications on other
elements.

An element to establish the total charge of a beam. Active on first pass only. If given, overrides all
charge specifications on other elements.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes
Parameter Name Units Type Default Description

TOTAL C double 0.0 total charge in beam

PER PARTICLE C double 0.0 charge per macroparticle

ALLOW TOTAL CHANGE NULL long 0 If nonzero, allow total charge
to change while tracking even
if number of particles does not
change. Useful for ramping of
charge.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This is the preferred way to assign charge to a beam, which is needed for the use of CSR
simulation (CSRCSBEND, CSRDRIFT), wake simulation (WAKE, TRWAKE, LRWAKE, ZLON-
GIT, ZTRANSVERSE), rf mode simulation (RFMODE, TRFMODE, FRFMODE, RTRFMODE),
space charge simulation (LSCDRIFT, RFCW, SCMULT), and intrabeam scattering simulation (IB-
SCATTER).

212

CLEAN

10.14 CLEAN—Cleans the beam by removing outlier particles.

Cleans the beam by removing outlier particles.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

MODE STRING stdeviation stdeviation, absdeviation, or
absvalue

XLIMIT double 0.0 Limit for x

XPLIMIT double 0.0 Limit for x’

YLIMIT double 0.0 Limit for y

YPLIMIT double 0.0 Limit for y’

TLIMIT double 0.0 Limit for t

DELTALIMIT double 0.0 Limit for (p-p0)/p0

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

213

CORGPIPE

10.15 CORGPIPE—A corrugated round pipe, commonly used as a dechirper
in linacs.

A corrugated round pipe, commonly used as a dechirper in linacs.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

RADIUS M double 0.0 pipe radius

PERIOD M double 0.0 period of corrugations (<< ra-
dius recommended)

GAP M double 0.0 gap in corrugations (< period
required)

DEPTH M double 0.0 depth of corrugations (<< ra-
dius, > period recommended)

DT S double 0.0 maximum time duration of
wake (0 for autoscale)

TMAX S double 0.0 maximum time duration of
wake (0 for autoscale)

N BINS long 0 number of bins for charge his-
togram (0 for autoscale)

INTERPOLATE long 0 interpolate wake?

SMOOTHING long 0 Use Savitzky-Golay filter to
smooth current histogram?

SG HALFWIDTH long 4 Savitzky-Golay filter half-
width for smoothing

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

CHANGE P0 long 0 change central momentum?

ALLOW LONG BEAM long 0 allow beam longer than wake
data?

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the wake
to full strength.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element implements the longitudinal wake for a corrugated pipe using a model by K. Bane
[38]. The method used is identical to that for the WAKE element. The only difference is that instead

214

of providing a file to specify the wake, one specifies the parameters of Bane’s model, as described
above.

Setting the N BINS and TMAX paramaters to 0 is recommended. This results in auto-scaling of
the number of bins and the time spacing of the wake to ensure sufficient length to cover the beam
and a sufficiently fine time step to resolve the oscillations in the wake.

As with WAKE, the default degree of smoothing (SG HALFWIDTH=4) may be excessive. It is
suggested that users vary this parameter to verify that results are reliable if smoothing is employed
(SMOOTHING=1).

215

CSBEND

10.16 CSBEND—A canonical kick sector dipole magnet.

A canonical kick sector dipole magnet.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric quadrupole strength

K2 1/M3 double 0.0 geometric sextupole strength

K3 1/M4 double 0.0 geometric octupole strength

K4 1/M5 double 0.0 geometric decapole strength

K5 1/M6 double 0.0 geometric 12-pole strength

K6 1/M7 double 0.0 geometric 14-pole strength

K7 1/M8 double 0.0 geometric 16-pole strength

K8 1/M9 double 0.0 geometric 18-pole strength

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

H1 1/M double 0.0 entrance pole-face curvature

H2 1/M double 0.0 exit pole-face curvature

HGAP M double 0.0 half-gap between poles

FINT double 0.5 edge-field integral

FINT1 double -1 edge-field integral. If negative,
use FINT.

FINT2 double -1 edge-field integral. If negative,
use FINT.

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error of all
components

FSE DIPOLE double 0.0 fractional strength error of
dipole component

FSE QUADRUPOLE double 0.0 fractional strength error of
quadrupole component

ETILT RAD double 0.0 error rotation about incoming
longitudinal axis

216

CSBEND continued

A canonical kick sector dipole magnet.
Parameter Name Units Type Default Description

N KICKS long 4 number of kicks

NONLINEAR short 1 include nonlinear field compo-
nents?

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

EDGE1 EFFECTS short 1 include entrance edge effects?

EDGE2 EFFECTS short 1 include exit edge effects?

EDGE ORDER short 1 order to which to include edge
effects

INTEGRATION ORDER short 4 integration order (2 or 4)

EXPAND HAMILTONIAN short 0 If 1, Hamiltonian is expanded
to leading order.

EDGE1 KICK LIMIT double -1 maximum kick entrance edge
can deliver

EDGE2 KICK LIMIT double -1 maximum kick exit edge can
deliver

KICK LIMIT SCALING short 0 scale maximum edge kick with
FSE?

USE BN short 0 use b<n> instead of K<n>?

EXPANSION ORDER short 0 Order of field expansion.
(0=auto)

B1 1/M double 0.0 K1 = b1/rho, where rho is
bend radius

B2 1/M2 double 0.0 K2 = b2/rho

B3 1/M3 double 0.0 K3 = b3/rho

B4 1/M4 double 0.0 K4 = b4/rho

B5 1/M5 double 0.0 K5 = b5/rho

B6 1/M6 double 0.0 K6 = b6/rho

B7 1/M7 double 0.0 K7 = b7/rho

B8 1/M8 double 0.0 K8 = b8/rho

XREFERENCE M double 0.0 reference x for interpretation
of fn values

F1 double 0.0 Fractional normal field error
fn=bn*xrn̂/n!, adds to K1 or
b1.

217

CSBEND continued

A canonical kick sector dipole magnet.
Parameter Name Units Type Default Description

F2 double 0.0 Fractional normal field error
fn=bn*xrn̂/n!, adds to K2 or
b2.

F3 double 0.0 Fractional normal field error
fn=bn*xrn̂/n!, additive.

F4 double 0.0 Fractional normal field error
fn=bn*xrn̂/n!, additive.

F5 double 0.0 Fractional normal field error
fn=bn*xrn̂/n!, additive.

F6 double 0.0 Fractional normal field error
fn=bn*xrn̂/n!, additive.

F7 double 0.0 Fractional normal field error
fn=bn*xrn̂/n!, additive.

F8 double 0.0 Fractional normal field error
fn=bn*xrn̂/n!, additive.

G1 double 0.0 Fractional skew field error.

G2 double 0.0 Fractional skew field error.

G3 double 0.0 Fractional skew field error.

G4 double 0.0 Fractional skew field error.

G5 double 0.0 Fractional skew field error.

G6 double 0.0 Fractional skew field error.

G7 double 0.0 Fractional skew field error.

G8 double 0.0 Fractional skew field error.

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

ISR1PART short 1 Include ISR for single-particle
beam only if ISR=1 and
ISR1PART=1

218

CSBEND continued

A canonical kick sector dipole magnet.
Parameter Name Units Type Default Description

SQRT ORDER short 0 Ignored, kept for backward
compatibility only.

USE RAD DIST short 0 If nonzero, overrides
SYNCH RAD and ISR,
causing simulation of ra-
diation from distributions,
optionally including opening
angle.

ADD OPENING ANGLE short 1 If nonzero, radiation open-
ing angle effects are added if
USE RAD DIST is nonzero.

PHOTON OUTPUT FILE STRING NULL output file for photons, if
USE RAD DIST=1

PHOTON LOW ENERGY CUTOFF eV double 0.0 Lower limit of photon energy
to output.

REFERENCE CORRECTION short 0 If nonzero, reference trajec-
tory is subtracted from parti-
cle trajectories to compensate
for inaccuracy in integration.

TRACKING MATRIX short 0 If nonzero, gives order of
tracking-based matrix up to
third order to be used for
twiss parameters etc. If zero,
2nd-order analytical matrix is
used.

FSE CORRECTION short 0 If nonzero, FSE is adjusted
to compensate for edge ef-
fects when EDGE1 EFFECTS
or EDGE2 EFFECTS = 2

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element provides a symplectic bending magnet with the exact Hamiltonian. For example,
it retains all orders in the momentum offset and curvature. The field expansion is available to
eighth order.

One pitfall of symplectic integration is the possibility of orbit and path-length errors for the
reference orbit if too few kicks are used. This may be an issue for rings. Hence, one must verify that
a sufficient number of kicks are being used by looking at the trajectory closure and length of an

219

on-axis particle by tracking. Using INTEGRATION ORDER=4 is recommended to reduce the number
of required kicks.

As of version 28.0 and later, the REFERENCE_CORRECTION feature is available to compensate for
errors inherent in the numerical integration of the trajectories. In particular, depending on the
number of kicks used, as well as the bending radius and angle, an on-axis particle may emerge from
the element with a non-zero trajectory and a path-length error. With REFERENCE_CORRECTION set
to a non-zero value, these errors are subtracted from the coordinates of all particles. There are
some pitfalls to using this feature: first, one may not realize that the number of kicks is too small
to provide good results, since the output trajectory of the central particle will always be (nearly)
identically zero. Second, in a magnet with a gradient or other field nonuniformities, a particle may
emerge centered on the ideal trajectory yet still see the impact of the gradient, sextupole, etc. For
these reasons, this feature should be used with caution and only when the residual trajectory is
large enough to cause problems.

Higher-order field components
Normally, one specifies the higher-order components of the field with the Kn, with n = 1 through

8. The field expansion in the midplane is By(x) = Bo ∗ (1 +
∑8

n=1
Knρo
n! xn). By setting the USE bN

flag to a nonzero value, one may instead specify the bn parameters, which are defined by the
expansion By(x) = Bo ∗ (1+

∑8
n=1

bn
n!x

n). This is convenient if one is varying the dipole radius but
wants to work in terms of constant field quality.

Setting NONLINEAR=0 turns off all the terms above K 1 (or b 1) and also turns off effects due to
curvature that would normally result in a gradient producing terms of higher order.

The EXPANSION_ORDER parameter controls the order of the expansion of the nonlinear fields, so
that terms are limited to xiyj with i+j ≤EXPANSION_ORDER. By default, when EXPANSION_ORDER=0,
the expansion order is set automatically, as follows: If the highest non-zero multipole order (spec-
ified by Kn, Bn, Fn, or Gn) is n (with n = 1 being quadruople), then the expansion order is set
to n + 3. However, the expansion order is never automatically set to less than 4, unless all the
multipole terms are zero, in which case the expansion always yields a constant. Since the number
of polynomial terms increases like the square of the expansion order, using many multipole terms
can significantly increase run time. The maximum value for the expansion order is 10.

Edge angles and edge effects
Some confusion may exist about the edge angles, particularly the signs. For a sector magnet,

we have of course E1=E2=0. For a symmetric rectangular magnet, E1=E2=ANGLE/2. If ANGLE is
negative, then so are E1 and E2. To understand this, imagine a rectangular magnet with positive
ANGLE. If the magnet is flipped over, then ANGLE becomes negative, as does the bending radius ρ.
Hence, to keep the focal length of the edge 1/f = − tanEi/ρ constant, we must also change the
sign of Ei.

Several models are available for edge (or fringe) effects. Which is used depends on the settings
of the EDGE_ORDER, EDGE1_EFFECTS, and EDGE2_EFFECTS parameters EDGE1_EFFECTS controls en-
trance edge effects while EDGE2_EFFECTS controls exit edge effects, as follows:

• 1: — Edge effects using non-symplectic method [3].

– EDGE_ORDER<2 — linear edge focusing with δ-dependence to all orders. Generally not
recommended if symplecticity is important, though when the edge effects are weak it
appears acceptable.

– EDGE_ORDER>=2 — second-order matrix edge focusing with δ-dependence to all orders.
Use of this model is strongly discouraged when symplecticity matters.

220

• 2: — Edge effects using K. Hwang’s symplectic method [45]. Note that there will be a trajec-
tory offset when using this method that is particularly evident for small bending radii, due to
extension of the fringe field outside the body of the magnet. To suppress this, adjustment of
the FSE parameter can be performed automatically if FSE_CORRECTION is set to a non-zero
value. If FSE_CORRECTION=1, the path-length is adjusted to match the nominal length, which
is not physical; this behavior can be suppressed by setting FSE_CORRECTION=2.

– EDGE_ORDER<2 — include only terms linear in transverse coordinates, but δ-dependence
to all orders. Recommended for applications where symplecticity matters.

– EDGE_ORDER>=2 — include all terms. This settings has been observed to produce emit-
tance damping in some cases (particularly with large emittance and small bending radii),
so users are advised to be cautious.

• 3: — Edge effects using symplectic method similar to [3]. The value of EDGE_ORDER is ignored.
Recommended for applications where symplecticity matters.

• Other: — No edge effects.

Radiation effects
Incoherent synchrotron radiation, when requested with ISR=1, normally uses gaussian distri-

butions for the excitation of the electrons. Setting USE RAD DIST=1 invokes a more sophisticated
algorithm that uses correct statistics for the photon energy and number distributions. In addition,
if USE RAD DIST=1 one may also set ADD OPENING ANGLE=1, which includes the photon angular
distribution when computing the effect on the emitting electron.

Adding errors
When adding errors, care should be taken to choose the right parameters. The FSE and ETILT

parameters are used for assigning errors to the strength and alignment relative to the ideal values
given by ANGLE and TILT. One can also assign errors to ANGLE and TILT, but this has a different
meaning: in this case, one is assigning errors to the survey itself. The reference beam path changes,
so there is no orbit/trajectory error. The most common thing is to assign errors to FSE and ETILT.
Note that when adding errors to FSE, the error is assumed to come from the power supply, which
means that multipole strengths also change.

Splitting dipoles
When dipoles are long, it is common to want to split them into several pieces, to get a better

look at the interior optics. When doing this, care must be exercised not to change the optics.
elegant has some special features that are designed to reduce or manage potential problems. At
issue is the need to turn off edge effects between the portions of the same dipole.

First, one can simply use the divide_elements command to set up the splitting. Using this
command, elegant takes care of everything.

Second, one can use a series of dipoles with the same name. In this case, elegant automatically
turns off interior edge effects. This is true when the dipole elements directly follow one another or
are separated by a MARK element.

Third, one can use a series of dipoles with different names. In this case, one must also use the
EDGE1_EFFECTS and EDGE2_EFFECTS parameters to turn off interior edge effects.

221

CSRCSBEND

10.17 CSRCSBEND—Like CSBEND, but incorporates a simulation of Coher-
ent Synchrotron radiation.

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric quadrupole strength

K2 1/M3 double 0.0 geometric sextupole strength

K3 1/M4 double 0.0 geometric octupole strength

K4 1/M5 double 0.0 geometric decapole strength

K5 1/M6 double 0.0 geometric 12-pole strength

K6 1/M7 double 0.0 geometric 14-pole strength

K7 1/M8 double 0.0 geometric 16-pole strength

K8 1/M9 double 0.0 geometric 18-pole strength

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

H1 1/M double 0.0 entrance pole-face curvature

H2 1/M double 0.0 exit pole-face curvature

HGAP M double 0.0 half-gap between poles

FINT double 0.5 edge-field integral

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

ETILT RAD double 0.0 error rotation about incoming
longitudinal axis

N KICKS long 4 number of kicks

NONLINEAR short 1 include nonlinear field compo-
nents?

LINEARIZE short 0 use linear matrix instead of
symplectic integrator?

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

EDGE1 EFFECTS short 1 include entrance edge effects?

222

CSRCSBEND continued

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.
Parameter Name Units Type Default Description

EDGE2 EFFECTS short 1 include exit edge effects?

EDGE ORDER short 1 order to which to include edge
effects

INTEGRATION ORDER short 4 integration order (2 or 4)

BINS long 0 number of bins for CSR wake

BIN ONCE short 0 bin only at the start of the
dipole?

BIN RANGE FACTOR double 1.2 Factor by which to increase
the range of histogram com-
pared to total bunch length.
Large value eliminates binning
problems in CSRDRIFTs.

SG HALFWIDTH short 0 Savitzky-Golay filter half-
width for smoothing current
histogram. If less than 1, no
SG smoothing is performed.

SG ORDER short 1 Savitzky-Golay filter order for
smoothing current histogram

SGDERIV HALFWIDTH short 0 Savitzky-Golay filter half-
width for taking derivative of
current histogram. Defaults
to SG HALFWIDTH (if
positive) or else 1.

SGDERIV ORDER short 1 Savitzky-Golay filter order for
taking derivative of current
histogram

TRAPAZOID INTEGRATION short 1 Select whether to use
trapazoid-rule integration
(default) or a simple sum.

OUTPUT FILE STRING NULL output file for CSR wakes

OUTPUT INTERVAL long 1 interval (in kicks) of output to
OUTPUT FILE

OUTPUT LAST WAKE ONLY short 0 output final wake only?

STEADY STATE short 0 use steady-state wake equa-
tions?

223

CSRCSBEND continued

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.
Parameter Name Units Type Default Description

IGF short 0 use integrated Greens
function (requires
STEADY STATE=1)?

USE BN short 0 use b<n> instead of K<n>?

EXPANSION ORDER short 0 Order of field expansion.
(0=auto)

B1 1/M double 0.0 K1 = b1/rho, where rho is
bend radius

B2 1/M2 double 0.0 K2 = B2/rho

B3 1/M3 double 0.0 K3 = B3/rho

B4 1/M4 double 0.0 K4 = B4/rho

B5 1/M5 double 0.0 K5 = B5/rho

B6 1/M6 double 0.0 K6 = B6/rho

B7 1/M7 double 0.0 K7 = B7/rho

B8 1/M8 double 0.0 K8 = B8/rho

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

ISR1PART short 1 Include ISR for single-particle
beam only if ISR=1 and
ISR1PART=1

CSR short 1 enable CSR computations?

BLOCK CSR short 0 block CSR from entering CSR-
DRIFT?

DERBENEV CRITERION MODE STRING disable disable, evaluate, or enforce

PARTICLE OUTPUT FILE STRING NULL name of file for phase-space
output

PARTICLE OUTPUT INTERVAL long 0 interval (in kicks) of output to
PARTICLE OUTPUT FILE

SLICE ANALYSIS INTERVAL long 0 interval (in kicks) of output
to slice analysis file (from
slice analysis command)

LOW FREQUENCY CUTOFF0 double -1 Highest spatial frequency at
which low-frequency cutoff fil-
ter is zero. If not positive,
no low-frequency cutoff filter is
applied. Frequency is in units
of Nyquist (0.5/binsize).

224

CSRCSBEND continued

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.
Parameter Name Units Type Default Description

LOW FREQUENCY CUTOFF1 double -1 Lowest spatial frequency
at which low-frequency
cutoff filter is 1. If
not given, defaults to
LOW FREQUENCY CUTOFF1.

HIGH FREQUENCY CUTOFF0 double -1 Spatial frequency at which
smoothing (high-frequency
cutoff) filter begins. If not
positive, no frequency filter
smoothing is done. Fre-
quency is in units of Nyquist
(0.5/binsize).

HIGH FREQUENCY CUTOFF1 double -1 Spatial frequency at which
smoothing (high-frequency
cutoff) filter is 0. If
not given, defaults to
HIGH FREQUENCY CUTOFF0.

CLIP NEGATIVE BINS short 1 If non-zero, then any bins with
negative counts after the filters
are applied have the counts set
to zero.

WAKE FILTER FILE STRING NULL Name of file supplying wake-
field filtering data.

WFF FREQ COLUMN STRING NULL Name of column supplying fre-
quency values for wakefield fil-
tering data.

WFF REAL COLUMN STRING NULL Name of column supplying
real values for wakefield filter-
ing data.

WFF IMAG COLUMN STRING NULL Name of column supplying
imaginary values for wakefield
filtering data.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

For a discussion of the method behind this element, see M. Borland, “Simple method for particle
tracking with coherent synchrotron radiation,” Phys. Rev. ST Accel. Beams 4, 070701 (2001) and
G. Stupakov and P. Emma, SLAC LCLS-TN-01-12 (2001).

225

Recommendations for using this element. The default values for this element are not
the best ones to use. They are retained only for consistency through upgrades. In using this
element, it is recommended to have 50 to 100 k particle in the simulation. Setting BINS=600

and SG HALFWIDTH=1 is also recommended to allow resolution of fine structure in the beam and
to avoid excessive smoothing. It is strongly suggested that the user vary these parameters and
view the histogram output to verify that the longitudinal distribution is well represented by the
histograms (use OUTPUT FILE to obtain the histograms). For LCLS simulations, we find that the
above parameters give essentially the same results as obtained with 500 k particles and up to 3000
bins.

In order to verify that the 1D approximation is valid, the user should also set DERBENEV CRITERION MODE

= ‘‘evaluate’’ and view the data in OUTPUT FILE. Generally, the criterion should be much less
than 1. See equation 11 of [20].

In order respects, this element is just like the CSBEND element, which provides a symplectic
bending magnet that is accurate to all orders in momentum offset. Please see the manual page for
CSBEND for more details about features not related to CSR.

Splitting dipoles: Splitting dipoles with continuation of CSR effects is possible provided the
dipole sections (all of which must have the same name) are either consecutive or separated only
by MARK, WATCH, or LSCDRIFT elements. The LSCDRIFT elements must have L=0 and should have
LEFFECTIVE set to the length of the upstream dipole segment. This allows simulating LSC and
CSR within a single dipole.

226

CSRDRIFT

10.18 CSRDRIFT—A follow-on element for CSRCSBEND that applies the
CSR wake over a drift.

A follow-on element for CSRCSBEND that applies the CSR wake over a drift.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

ATTENUATION LENGTH M double 0.0 exponential attenuation
length for wake

DZ double 0.0 interval between kicks

N KICKS long 1 number of kicks (if DZ is zero)

SPREAD short 0 use spreading function?

USE OVERTAKING LENGTH short 0 use overtaking length for AT-
TENUATION LENGTH?

OL MULTIPLIER double 1 factor by which to multiply the
overtaking length to get the
attenuation length

CSR short 1 do CSR calcuations

USE SALDIN54 short 0 Use Saldin et al eq. 54 (NIM
A 398 (1997) 373-394 for decay
vs z?

SALDIN54POINTS long 1000 Number of values of position
inside bunch to average for
Saldin eq 54.

SALDIN54NORM MODE STRING peak peak or first

SPREAD MODE STRING full full, simple, or radiation-only

WAVELENGTH MODE STRING sigmaz sigmaz or peak-to-peak

BUNCHLENGTH MODE STRING 68-percentile rms, 68-percentile, or 90-
percentile

SALDIN54 OUTPUT STRING NULL Filename for output of CSR
intensity vs. z as computed us-
ing Saldin eq 54.

USE STUPAKOV short 0 Use treatment from G. Stu-
pakov’s note of 9/12/2001?

STUPAKOV OUTPUT STRING NULL Filename for output of CSR
wake vs. s as computed using
Stupakov’s equations.

STUPAKOV OUTPUT INTERVAL long 1 Interval (in kicks) between
output of Stupakov wakes.

SLICE ANALYSIS INTERVAL long 0 interval (in kicks) of output
to slice analysis file (from
slice analysis command)

227

CSRDRIFT continued

A follow-on element for CSRCSBEND that applies the CSR wake over a drift.
Parameter Name Units Type Default Description

LINEARIZE short 0 use linear optics for drift
pieces?

LSC INTERPOLATE short 1 Interpolate computed LSC
wake?

LSC BINS long 0 If non-zero, include LSC with
given number of bins.

LSC LOW FREQUENCY CUTOFF0 double -1 Highest spatial frequency at
which low-frequency cutoff fil-
ter is zero. If not positive,
no low-frequency cutoff filter is
applied. Frequency is in units
of Nyquist (0.5/binsize).

LSC LOW FREQUENCY CUTOFF1 double -1 Lowest spatial frequency
at which low-frequency
cutoff filter is 1. If
not given, defaults to
LOW FREQUENCY CUTOFF1.

LSC HIGH FREQUENCY CUTOFF0 double -1 Spatial frequency at which
smoothing filter begins for
LSC. If not positive, no fre-
quency filter smoothing is
done. Frequency is in units of
Nyquist (0.5/binsize).

LSC HIGH FREQUENCY CUTOFF1 double -1 Spatial frequency at which
smoothing filter is 0 for
LSC. If not given, defaults to
HIGH FREQUENCY CUTOFF0.

LSC RADIUS FACTOR double 1.7 Radius factor for LSC compu-
tation.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element has a number of models for simulation of CSR in drift spaces following CSRCS-
BEND elements. Note that all models allow support splitting the drift into multiple CSRDRIFT
elements. One can also have intervening elements like quadrupoles, as often happens in chicanes.
The CSR effects inside such intervening elements are applied in the CSRDRIFT downstream of the
element.

For a discussion of some of the methods behind this element, see M. Borland, “Simple method

228

for particle tracking with coherent synchrotron radiation,” Phys. Rev. ST Accel. Beams 4, 070701
(2001).

N.B.: by default, this element uses 1 CSR kick (N KICKS=1) at the center of the drift. This
is usually not a good choice. I usually use the DZ parameter instead of N KICKS, and set it to
something like 0.01 (meters). The user should vary this parameter to assess how small it needs to
be.

The models are as following, in order of decreasing sophistication and accuracy:

• G. Stupakov’s extension of Saldin et al. Set USE STUPAKOV=1. The most advanced model
at present is based on a private communication from G. Stupakov (SLAC), which extends
equation 87 of the one-dimensional treatment of Saldin et al. (NIM A 398 (1997) 373-394) to
include the post-dipole region. This model includes not only the attenuation of the CSR as
one proceeds along the drift, but also the change in the shape of the “wake.”

This model has the most sophisticated treatment for intervening elements of any of the
models. For example, if you have a sequence CSRCSBEND-CSRDRIFT-CSRDRIFT and compare
it with the sequence CSRCSBEND-CSRDRIFT-DRIFT -CSRDRIFT, keeping the total drift length
constant, you’ll find no change in the CSR-induced energy modulation. The model back-
propagates to the beginning of the intervening element and performs the CSR computations
starting from there.

This is the slowest model to run. It uses the same binning and smoothing parameters as the
upstream CSRCSBEND. If run time is a problem, compare it to the other models and use
only if you get different answers.

• M. Borland’s model based on Saldin et al. equations 53 and 54. Set USE SALDIN54=1.
This model computes the fall-off of the CSR wake from the work of Saldin and coworkers, as
described in the reference above. It does not compute the change in the shape of the wake.
The fall-off is computed approximately as well, based on the fall-off for a rectangular current
distribution. The length of this rectangular bunch is taken to be twice the bunch length
computed according to the BUNCHLENGTH MODE parameter (see below). If your bunch
is nearly rectangular, then you probably want BUNCHLENGTH MODE of “90-percentile”.

• Exponential attenuation of a CSR wake with unchanging shape. There are two options here.
First, you can provide the attenuation length yourself, using the ATTENUATION LENGTH
parameter. Second, you can set USE OVERTAKING LENGTH=1 and let elegant compute
the overtaking length for use as the attenuation length. In addition, you can multiply this
result by a factor if you wish, using the OL MULTIPLIER parameter.

• Beam-spreading model. This model is not recommended. It is based on the seemingly plau-
sible idea that CSR spreads out just like any synchrotron radiation, thus decreasing the
intensity. The model doesn’t reproduce experiments.

The “Saldin 54” and “overtaking-length” models rely on computation of the bunch length, which
is controlled with the BUNCHLENGTH MODE parameter. Nominally, one should use the true
RMS, but when the beam has temporal spikes, it isn’t always clear that this is the best choice. The
choices are “rms”, “68-percentile”, and “90-percentile”. The last two imply using half the length
determined from the given percentile in place of the rms bunch length. I usually use 68-percentile,
which is the default.

229

CWIGGLER

10.19 CWIGGLER—Tracks through a wiggler using canonical integration rou-
tines of Y. Wu (Duke University).

Tracks through a wiggler using canonical integration routines of Y. Wu (Duke University).
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 Total length

B MAX T double 0.0 Maximum on-axis magnetic
field.

BX MAX T double 0.0 Maximum on-axis magnetic
field. Ignored if B MAX is
nonzero.

BY MAX T double 0.0 Maximum on-axis magnetic
field. Ignored if B MAX is
nonzero.

TGU GRADIENT 1/M double 0.0 Transverse gradient divided by
maximum on-axis field, used if
TGU=1.

TGU COMP FACTOR NULL double 1 Use to adjust constant field
component to reduce trajec-
tory error.

POLE1 FACTOR NULL double 1 Use to adjust first and last
pole strength, e.g., to reduce
trajectory error.

POLE2 FACTOR NULL double 1 Use to adjust second and
penultimate pole strength,
e.g., to reduce trajectory
error.

POLE3 FACTOR NULL double 1 Use to adjust third and third-
from=last pole strength, e.g.,
to reduce trajectory error.

DX M double 0.0 Misaligment.

DY M double 0.0 Misaligment.

DZ M double 0.0 Misaligment.

TILT RAD double 0.0 Rotation about beam axis.

PERIODS long 0 Number of wiggler periods.

STEPS PER PERIOD long 10 Integration steps per period.

INTEGRATION ORDER short 4 Integration order (2 or 4).

BY FILE STRING NULL Name of SDDS file with By
harmonic data.

230

CWIGGLER continued

Tracks through a wiggler using canonical integration routines of Y. Wu (Duke University).

Parameter Name Units Type Default Description

BX FILE STRING NULL Name of SDDS file with Bx
harmonic data.

BY SPLIT POLE short 0 Use ”split-pole” expansion for
By?

BX SPLIT POLE short 0 Use ”split-pole” expansion for
Bx?

SYNCH RAD short 0 Include classical, single-
particle synchrotron radia-
tion?

ISR short 0 Include incoherent syn-
chrotron radiation (quantum
excitation)?

ISR1PART short 1 Include ISR for single-particle
beam only if ISR=1 and
ISR1PART=1

SINUSOIDAL short 0 Ideal sinusoidal wiggler?
If non-zero, BX FILE and
BY FILE are not used.

VERTICAL short 0 If SINUSOIDAL is non-zero,
then setting this to non-zero
gives a vertical wiggler. De-
fault is horizontal.

HELICAL short 0 Ideal helical wiggler? If
non-zero and SINUSOIDAL is
also non-zero, BX FILE and
BY FILE are not used.

TGU short 0 Ideal transverse gradient un-
dulator? If non-zero and SI-
NUSOIDAL is also non-zero,
BX FILE and BY FILE are
not used. Give gradient in
TGU GRADIENT.

FORCE MATCHED short 1 Force matched dispersion for
first harmonics? If non-zero,
start and end of magnetic field
will be inset from the ends of
the device if phase is not 0 or
π.

231

CWIGGLER continued

Tracks through a wiggler using canonical integration routines of Y. Wu (Duke University).

Parameter Name Units Type Default Description

FIELD OUTPUT STRING NULL Name of file to which field
samples will be written. Slow,
so use only for debugging.

VERBOSITY short 0 A higher value requires more
detailed printouts related to
computations.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a wiggler or undulator using a modified version of Ying Wu’s canonical
integration code for wigglers. To use the element, one must supply an SDDS file giving harmonic
analysis of the wiggler field. The field expansion used by the code for a horizontally-deflecting
wiggler is (Y. Wu, Duke University, private communication).

By = − |B0|
∑

m,n

Cmn cos(kxlx) cosh(kymy) cos(kznz + θzn), (29)

where |B0| is the peak value of the on-axis magnetic field, the Cmn give the relative amplitudes of
the harmonics, the wavenumbers statisfy k2ym = k2xl + k2zn, and θzn is the phase.

The file must contain the following columns:

• The harmonic amplitude, Cmn, in column Cmn.

• The phase, in radians, in column Phase. The phase of the first harmonic should be 0 or π in
order to have matched dispersion.

• The three wave numbers, normalized to kw = 2π/λw, where λw is the wiggler period. These
are given in columns KxOverKw, KyOverKw, and KzOverKw.

In Version 17.3 and later, for matrix computations elegant uses a first-order matrix derived
from particle tracking when it encounterse a CWIGGLER. Tests show that this gives good agree-
ment in the tunes from tracking and Twiss parameter calculations. For radiation integrals, an
idealized sinusoidal wiggler model is used with bending radius equal to Bρ/(B0

∑

Cmn) for each
plane. Energy loss, energy spread, and horizontal emittance should be estimated accurately.

elegant allows specifying field expansions for on-axis By and Bx components, so one can model
a helical wiggler. However, in this case one set of components should have θzn = 0 or θzn = π,
while the other should have θzn = ±π/2. Using Wu’s code, the latter set will not have matched
dispersion. Our modified version solves this by delaying the beginning of the field components in
question by λ/4 and ending the field prematurely by 3λ/4. This causes all the fields to start and
end at the crest, which ensures matched dispersion. The downside is that the (typically) vertical

232

wiggler component is missing a full period of field. One can turn off this behavior by setting
FORCE_MATCHED=0.

Additional field expansions
Y.Wu’s code included field expansions for a vertically-deflecting wiggler as well as the horizontally-

deflecting wiggler given above. In both cases, these expansions are suitable for a wiggler with two
poles that are above/below or left/right of the beam axis. They are not always suitable for devices
with more complex pole geometries.

Another geometry that is important is a “split pole” wiggler, in which each pole is made from two
pieces. Such configurations are seen, for example, in devices used to produce variable polarization.
In such cases, the expansion given above may not be appropriate. Here, we summarize the form of
the various expansions that elegant supports. For brevity, we show the form of a single harmonic
component.

Horizontal wiggler, normal poles, producesBy only on-axis. Specified by setting BY SPLIT POLE=0,
and giving BY FILE or SINUSOIDAL=1 with VERTICAL=0.

Bx = |B0|
kx cos(kzz + φ) sin(kxx) sinh(kyy)

ky
(30)

By = − |B0| cos(kxx) cos(kzz + φ) cosh(kyy) (31)

where k2y = k2x + k2z .
Experimental feature: Horizontal wiggler, normal poles, with transverse gradient, produces

By only on-axis. Specified by setting BY SPLIT POLE=0, SINUSOIDAL=1, TGU=1, VERTICAL=0. The
TGU normalized gradient is given using the TGU_GRADIENT parameter. Taking a as the normalized
gradient, the fields are[54]

Bx =
a |B0| sinh kuy cos kuz

ku
(32)

By = |B0|
(

(1 + ax) cosh kuy cos kuz +
aC

2k2u

e |B0|
γmec

)

(33)

Bz = − |B0| (1 + ax) sinh kuy sin kuz, (34)

where ku = ky = kz, kx = 0 is assumed, γ is the central relativistic factor for the beam and C is
given by the TGU_COMP_FACTOR parameter. This factor, and the term it multiplies, is present in
order to help suppress the trajectory error at the end of the device. It may require adjustment
in order to achieve the desired level of correction. In addition, the user may need to adjust the
pole-strength factors and include external misalignments and steering magnets in order to supress
not only the trajectory error, but also dispersion errors.

Horizontal wiggler, split poles, produces By only on-axis. Specified by setting BY SPLIT POLE=1,
and giving BY FILE or SINUSOIDAL=1 with VERTICAL=0.

Bx = − |B0|
kx cos(kzz + φ) sin(kyy) sinh(kxx)

ky
(35)

By = − |B0| cos(kyy) cos(kzz + φ) cosh(kxx) (36)

where k2x = k2y + k2z .
Vertical wiggler, normal poles, produces Bx only on-axis. Specified by setting BX SPLIT POLE=0,

and giving BX FILE or SINUSOIDAL=1 with either VERTICAL=1 or HELICAL=1.

Bx = |B0| cos(kyy) cos(kzz + φ) cosh(kxx) (37)

By = − |B0|
ky cos(kzz + φ) sin(kyy) sinh(kxx)

kx
(38)

233

where k2x = k2y + k2z .
Vertical wiggler, split poles, produces Bx only on-axis. Specified by setting BX SPLIT POLE=1,

and giving BX FILE or SINUSOIDAL=1 with either VERTICAL=1 or HELICAL=1.

Bx = |B0| cos(kxx) cos(kzz + φ) cosh(kyy) (39)

By = |B0|
ky cos(kzz + φ) sin(kxx) sinh(kyy)

kx
(40)

where k2y = k2x + k2z .

234

DRIF

10.20 DRIF—A drift space implemented as a matrix, up to 2nd order. Use
EDRIFT for symplectic tracking.

A drift space implemented as a matrix, up to 2nd order. Use EDRIFT for symplectic tracking.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

ORDER short 0 matrix order

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

235

DSCATTER

10.21 DSCATTER—A scattering element to add random changes to particle
coordinates according to a user-supplied distribution function

A scattering element to add random changes to particle coordinates according to a user-supplied
distribution function
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

PLANE STRING NULL Plane to scatter: xp, yp, dp
(dp is deltaP/P)

FILENAME STRING NULL Name of SDDS file containing
distribution function.

VALUENAME STRING NULL Name of column containing
the independent variable for
the distribution function data.

CDFNAME STRING NULL Name of column containing
the cumulative distribution
function data.

PDFNAME STRING NULL Name of column containing
the probability distribution
function data.

ONCEPERPARTICLE long 0 If nonzero, each particle can
only get scattered once by this
element.

FACTOR double 1 Factor by which to multiply
the independent variable val-
ues.

PROBABILITY double 1 Probability that any particle
will be selected for scattering.

GROUPID long -1 Group ID number (nonnega-
tive integer) for linking once-
per-particle behavior of multi-
ple elements.

RANDOMSIGN long 0 If non-zero, then the scatter is
given a random sign. Useful if
distribution data is one-sided.

LIMITPERPASS long -1 Maximum number of particles
that will be scattered on each
pass.

LIMITTOTAL long -1 Maximum number of particles
that will be scatter for each
step.

236

DSCATTER continued

A scattering element to add random changes to particle coordinates according to a user-supplied
distribution function
Parameter Name Units Type Default Description

STARTONPASS long 0 Pass number to start on.

ENDONPASS long -1 Pass number to end on (inclu-
sive). Ignored if negative.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

237

ECOL

10.22 ECOL—An elliptical collimator.

An elliptical collimator.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

X MAX M double 0.0 half-axis in x

Y MAX M double 0.0 half-axis in y

DX M double 0.0 misalignment

DY M double 0.0 misalignment

OPEN SIDE STRING NULL which side, if any, is open (+x,
-x, +y, -y)

EXPONENT short 2 Exponent for boundary equa-
tion. 2 is ellipse.

YEXPONENT short 0 y exponent for boundary equa-
tion. 2 is ellipse. If 0, defaults
to EXPONENT

INVERT short 0 If non-zero, particles inside the
aperture are lost while those
outside are transmitted.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

238

EDRIFT

10.23 EDRIFT—Tracks through a drift with no approximations (Exact DRIFT).

Tracks through a drift with no approximations (Exact DRIFT).
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

239

EHKICK

10.24 EHKICK—A horizontal steering dipole implemented using an exact hard-
edge model

A horizontal steering dipole implemented using an exact hard-edge model
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

KICK RAD double 0.0 kick angle

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

CALIBRATION double 1 factor applied to obtain kick

LERAD double 0.0 if L=0, use this length for ra-
diation computations

STEERING short 1 use for steering?

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

STEERING MULTIPOLES STRING NULL input file for systematic multi-
pole content of steering kicks

RANDOM MULTIPOLES STRING NULL input file for random multi-
poles content of steering kicks

RANDOM MULTIPOLE FACTOR double 1 Factor by which to multiply
random multipoles

STEERING MULTIPOLE FACTOR double 1 Factor by which to multiply
steering multipoles

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

Note that closed_orbit and correct command may report orbit convergence problems when
using EHKICK in place of HKICK. This may be resolved by increasing the closed_orbit_accuracy

parameter.
If requested, synchrotron radiation effects are imposed as a kick at the end of the element.

240

EKICKER

10.25 EKICKER—A combined horizontal/vertical steering dipole implemented
using an exact hard-edge model

A combined horizontal/vertical steering dipole implemented using an exact hard-edge model
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes

241

Parameter Name Units Type Default Description

L M double 0.0 length

HKICK RAD double 0.0 horizontal kick angle

VKICK RAD double 0.0 vertical kick angle

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

HCALIBRATION double 1 factor applied to obtain hori-
zontal kick

VCALIBRATION double 1 factor applied to obtain verti-
cal kick

LERAD double 0.0 if L=0, use this length for ra-
diation computations

STEERING short 1 use for steering?

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

STEERING MULTIPOLES STRING NULL input file for systematic multi-
pole content of steering kicks

RANDOM MULTIPOLES STRING NULL input file for random multi-
poles content of steering kicks

RANDOM MULTIPOLE FACTOR double 1 Factor by which to multiply
random multipoles

STEERING MULTIPOLE FACTOR double 1 Factor by which to multiply
steering multipoles

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

Note that closed_orbit and correct command may report orbit convergence problems when
using EKICKER in place of KICKER. This may be resolved by increasing the closed_orbit_accuracy
parameter.

If requested, synchrotron radiation effects are imposed as a kick at the end of the element.

242

EMATRIX

10.26 EMATRIX—Explicit matrix input with data in the element definition,
rather than in a file.

Explicit matrix input with data in the element definition, rather than in a file.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 Length (used only for position
computation)

ANGLE RAD double 0.0 Angle (used only for position
computation)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

TILT RAD double 0.0 Tilt angle

YAW RAD double 0.0 Yaw angle

PITCH RAD double 0.0 Pitch angle

ORDER short 0

C1 M double 0.0

C2 double 0.0

C3 M double 0.0

C4 double 0.0

C5 M double 0.0

C6 double 0.0 Change in momentum offset

DELTAP double 0.0 Change in central momentum
(beta*gamma)

R11 double 0.0

R12 M double 0.0

R13 double 0.0

R14 M double 0.0

R15 double 0.0

R16 M double 0.0

R21 1/M double 0.0

R22 double 0.0

R23 1/M double 0.0

R24 double 0.0

R25 1/M double 0.0

R26 double 0.0

R31 double 0.0

R32 M double 0.0

R33 double 0.0

R34 M double 0.0

R35 double 0.0

243

EMATRIX continued

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

R36 M double 0.0

R41 1/M double 0.0

R42 double 0.0

R43 1/M double 0.0

R44 double 0.0

R45 1/M double 0.0

R46 double 0.0

R51 double 0.0

R52 M double 0.0

R53 double 0.0

R54 M double 0.0

R55 double 0.0

R56 M double 0.0

R61 1/M double 0.0

R62 double 0.0

R63 1/M double 0.0

R64 double 0.0

R65 1/M double 0.0

R66 double 0.0

T111 1/M double 0.0

T121 double 0.0

T122 M double 0.0

T131 1/M double 0.0

T132 double 0.0

T133 1/M double 0.0

T141 double 0.0

T142 M double 0.0

T143 double 0.0

T144 M double 0.0

T151 1/M double 0.0

T152 double 0.0

T153 1/M double 0.0

T154 double 0.0

T155 1/M double 0.0

T161 double 0.0

T162 M double 0.0

244

EMATRIX continued

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

T163 double 0.0

T164 M double 0.0

T165 double 0.0

T166 M double 0.0

T211 1/M2 double 0.0

T221 1/M double 0.0

T222 double 0.0

T231 1/M2 double 0.0

T232 1/M double 0.0

T233 1/M2 double 0.0

T241 1/M double 0.0

T242 double 0.0

T243 1/M double 0.0

T244 double 0.0

T251 1/M2 double 0.0

T252 1/M double 0.0

T253 1/M2 double 0.0

T254 1/M double 0.0

T255 1/M2 double 0.0

T261 1/M double 0.0

T262 double 0.0

T263 1/M double 0.0

T264 1 double 0.0

T265 1/M double 0.0

T266 double 0.0

T311 1/M double 0.0

T321 double 0.0

T322 M double 0.0

T331 1/M double 0.0

T332 double 0.0

T333 1/M double 0.0

T341 double 0.0

T342 M double 0.0

T343 double 0.0

T344 M double 0.0

T351 1/M double 0.0

245

EMATRIX continued

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

T352 double 0.0

T353 1/M double 0.0

T354 double 0.0

T355 1/M double 0.0

T361 double 0.0

T362 M double 0.0

T363 double 0.0

T364 M double 0.0

T365 double 0.0

T366 M double 0.0

T411 1/M2 double 0.0

T421 1/M double 0.0

T422 double 0.0

T431 1/M2 double 0.0

T432 1/M double 0.0

T433 1/M2 double 0.0

T441 1/M double 0.0

T442 double 0.0

T443 1/M double 0.0

T444 double 0.0

T451 1/M2 double 0.0

T452 1/M double 0.0

T453 1/M2 double 0.0

T454 1/M double 0.0

T455 1/M2 double 0.0

T461 1/M double 0.0

T462 double 0.0

T463 1/M double 0.0

T464 1 double 0.0

T465 1/M double 0.0

T466 double 0.0

T511 1/M double 0.0

T521 double 0.0

T522 M double 0.0

T531 1/M double 0.0

T532 double 0.0

246

EMATRIX continued

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

T533 1/M double 0.0

T541 double 0.0

T542 M double 0.0

T543 double 0.0

T544 M double 0.0

T551 1/M double 0.0

T552 double 0.0

T553 1/M double 0.0

T554 double 0.0

T555 1/M double 0.0

T561 double 0.0

T562 M double 0.0

T563 double 0.0

T564 M double 0.0

T565 double 0.0

T566 M double 0.0

T611 1/M2 double 0.0

T621 1/M double 0.0

T622 double 0.0

T631 1/M2 double 0.0

T632 1/M double 0.0

T633 1/M2 double 0.0

T641 1/M double 0.0

T642 double 0.0

T643 1/M double 0.0

T644 double 0.0

T651 1/M2 double 0.0

T652 1/M double 0.0

T653 1/M2 double 0.0

T654 1/M double 0.0

T655 1/M2 double 0.0

T661 1/M double 0.0

T662 double 0.0

T663 1/M double 0.0

T664 1 double 0.0

T665 1/M double 0.0

247

EMATRIX continued

Explicit matrix input with data in the element definition, rather than in a file.
Parameter Name Units Type Default Description

T666 double 0.0

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

Note that the default value of all matrix elements is 0. This can produce unexpected results if
one imagines by mistake that the default values give a unit matrix, for example.

248

EMITTANCE

10.27 EMITTANCE—Applies a linear transformation to the beam to force the
emittance to given values.

Applies a linear transformation to the beam to force the emittance to given values.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

EMITX M double -1 horizontal emittance

EMITY M double -1 vertical emittance

EMITNX M double -1 horizontal normalized emit-
tance

EMITNY M double -1 vertical normalized emittance

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element allows changing the emittance of a beam during tracking. It is intended to be
used to modify the emittance “slightly” to agree with, for example, experimental measurements.

The LCLS provides an example application: we track a beam from a photo-injector simulation
through a laser/undulator beam heater and then through the entire linac. The beam emittance
and twiss parameters are measured at a diagnostic downstream of the laser heater. We can insert
an EMITTANCE element and a TWISS element at the location of the diagnostic to force the beam
properties to the exact values that are measured. This compensates for imperfect modeling of the
photo-injector while allowing us to conveniently model the system between the photo-injector and
the point at which the emittance is measured.

249

ENERGY

10.28 ENERGY—An element that matches the central momentum to the beam
momentum, or changes the central momentum or energy to a specified
value.

An element that matches the central momentum to the beam momentum, or changes the central
momentum or energy to a specified value.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

CENTRAL ENERGY MC2 double 0.0 desired central gamma

CENTRAL MOMENTUM MC double 0.0 desired central beta*gamma

MATCH BEAMLINE long 0 if nonzero, beamline reference
momentum is set to beam av-
erage momentum

MATCH PARTICLES long 0 if nonzero, beam average mo-
mentum is set to beamline ref-
erence momentum

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

250

EVKICK

10.29 EVKICK—A vertical steering dipole implemented using an exact hard-
edge model

A vertical steering dipole implemented using an exact hard-edge model
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

KICK RAD double 0.0 kick angle

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

CALIBRATION double 1 factor applied to obtain kick

LERAD double 0.0 if L=0, use this length for ra-
diation computations

STEERING short 1 use for steering?

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

STEERING MULTIPOLES STRING NULL input file for systematic multi-
pole content of steering kicks

RANDOM MULTIPOLES STRING NULL input file for random multi-
poles content of steering kicks

RANDOM MULTIPOLE FACTOR double 1 Factor by which to multiply
random multipoles

STEERING MULTIPOLE FACTOR double 1 Factor by which to multiply
steering multipoles

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

Note that closed_orbit and correct command may report orbit convergence problems when
using EVKICK in place of VKICK. This may be resolved by increasing the closed_orbit_accuracy

parameter.
If requested, synchrotron radiation effects are imposed as a kick at the end of the element.

251

FLOOR

10.30 FLOOR—Sets floor coordinates

Sets floor coordinates
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

X double 0.0 X coordinate

Y double 0.0 Y coordinate

Z double 0.0 Z coordinate

THETA double 0.0 theta value

PHI double 0.0 phi value

PSI double 0.0 psi value

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

252

FMULT

10.31 FMULT—Multipole kick element with coefficient input from an SDDS
file.

Multipole kick element with coefficient input from an SDDS file.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

N KICKS long 1 number of kicks

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

FILENAME STRING NULL name of file containing multi-
pole data

SQRT ORDER short 0 Ignored, kept for backward
compatibility only.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a multipole element using a 4th-order sympletic integration. Specification
of the multipole strength is through an SDDS file. The file is expected to contain a single page of
data with the following elements:

1. An integer column named order giving the order of the multipole. The order is defined as
(Npoles − 2)/2, so a quadrupole has order 1, a sextupole has order 2, and so on.

2. A floating point column named KnL giving the integrated strength of the multipole, KnL,
where n is the order. The units are 1/mn.

3. A floating point column named JnL giving the integrated strength of the skew multipole, JnL,
where n is the order. The units are 1/mn.

The MULT element is also available, which allows the same functionality without an external file,
for a single component.

253

The transport matrix for FMULT elements is determined by tracking and will affect the tunes,
chromaticities, etc.

254

FRFMODE

10.32 FRFMODE—One or more beam-driven TM monopole modes of an RF
cavity, with data from a file.

One or more beam-driven TM monopole modes of an RF cavity, with data from a file.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no

255

Parameter Name Units Type Default Description

FILENAME STRING NULL input file

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 20 number of bins for current his-
togram

RIGID UNTIL PASS long 0 don’t affect the beam until this
pass

USE SYMM DATA long 0 use ”Symm” columns from
URMEL output file?

FACTOR double 1 factor by which to multiply
shunt impedances

CUTOFF HZ double 0.0 If >0, cutoff frequency. Modes
above this frequency are ig-
nored.

OUTPUT FILE STRING NULL Output file for voltage in each
mode.

FLUSH INTERVAL long 1 Interval in passes at which to
flush output data.

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the
impedance to full strength.

RESET FOR EACH STEP long 1 If nonzero, voltage and phase
are reset for each simulation
step.

LONG RANGE ONLY long 0 If nonzero, induced voltage
from present turn does not af-
fect bunch. Short range wake
should be included via WAKE
or ZLONGIT element.

N CAVITIES long 1 effect is multiplied by this
number, simulating N identi-
cal cavities

BUNCHED BEAM MODE long 1 If non-zero, then do calcula-
tions bunch-by-bunch.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a set of beam-driven monopole modes in a cavity using the fundamental
theorem of beam loading and phasor rotation. It is similar to RFMODE, but it allows faster simulation
of more than one mode. Also, the mode data is specified in an SDDS file. This file can be generated
using the APS version of URMEL, or by hand. It must have the following columns and units:

256

1. Frequency — The frequency of the mode in Hz. Floating point.

2. Q — The quality factor. Floating point.

3. ShuntImpedance or ShuntImpedanceSymm — The shunt impedance in Ohms, defined as
V 2/(2 ∗ P) (i.e., the “circuit definition”). Floating point. By default, ShuntImpedance is
used. However, if the parameter USE_SYMM_DATA is non-zero, then ShuntImpedanceSymm is
used. The latter is the full-cavity shunt impedance that URMEL computes by assuming that
the input cavity used is one half of a symmetric cavity.

The file may also have the following column:

1. beta — Normalized load impedance (dimensionless). Floating point. If not given, the β = 0
is assumed for all modes.

In many simulations, a transient effect may occur when using this element because, in the
context of the simulation, the impedance is switched on instantaneously. This can give a false
indication of the threshold for instability. The RAMP PASSES parameter should be used to prevent
this by slowly ramping the impedance to full strength. This idea is from M. Blaskiewicz (BNL).

Normally, the field dumped in the cavity by one particle affects trailing particles in the same
turn. However, if one is also using a WAKE or ZLONGIT element to simulate the short-range wake
of the cavity, this would be double-counting. In that case, one can use LONG_RANGE_ONLY=1 to
suppress the same-turn effects of the RFMODE element.

257

FTABLE

10.33 FTABLE—Tracks through a magnetic field which is expressed by a SDDS
table.

Tracks through a magnetic field which is expressed by a SDDS table.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 The effective field length mea-
sured along a straight line.

ANGLE RAD double 0.0 The designed bending angle

L1 M double 0.0 The left fringe field length.

L2 M double 0.0 The right fringe field length.
L1+L+L2=Total z span in the
input field table.

E1 RAD double 0.0 The designed entrance edge
angle

E2 RAD double 0.0 The designed exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FACTOR double 1 Factor by which to multiply
field data.

THRESHOLD double 1e-08 Fields smaller than this are
considered 0.

INPUT FILE STRING NULL Name of SDDS file which con-
tains field data.

N KICKS long 1 Number of kicks into which to
split the element.

VERBOSE short 0 Used for debugging code. Not
applicable to Pelegant

SIMPLE INPUT short 0 If non-zero, use simple input
format.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is used for tracking through an arbitrary magnetic field when its values are known
at regularly spaced grid points and it is hard to find a suitable model to describe it. The input

258

magnet parameter and coordinate system definition are illustrated in Fig:1.
The THRESHOLD parameter sets the magnitude of magnetic field below which the field is consid-

ered zero. If this is too small, there may be numerical problems.
The field data is provided in an SDDS file, with two formats available. The recommended

format can be used if the SIMPLE_INPUT parameter is non-zero.

Simple input format — This format is shared with the BMXYZ and BRAT elements and is more
convenient than the original, default format. The field map file is an SDDS file with the following
columns:

• x, y, z — Transverse coordinates in meters (units should be “m”).

• Bx, By, Bz — Field values in Tesla (units should be “T”).

The field map file must contain a rectangular grid of points, equispaced (separately) in x, y,
and z. There should be no missing values in the grid (this is not checked by elegant). In addition,
the x values must vary fastest as the values are accessed in row order, then the y values. To ensure
that this is the case, use the following command on the field file:

sddssort fieldFile -column=z,incr -column=y,incr -column=x,incr

N.B.: Particles are injected into the field region with z=0. Hence, one would normally want the
minimum value of z to be 0.

Original input format — This format is difficult to understand and set up. Although it is not
recommended, it is the default at present for historical reasons.

The field data is saved in a 3 pages (Bx, By, Bz) 3D histogram SDDS table (see MHISTOGRAM

for detail). An example is shown in Fig:2. This SDDS file must have one column Frequency to
store the field data in Tesla, and following parameters:

• ND — Type “long”; Value “3”.

• Variable00Name, Variable01Name,Variable02Name — Type “string”; Value “x”, “y”, “z”.

• Variable00Min, Variable01Min, Variable02Min — Type “double”; Value: the minimum
boundary coordinates of “x”, “y”, “z” in meter. Variable02Min (z min) must start from
zero.

• Variable00Max,Variable01Max, Variable02Max — Type “double”; Value: the maximum
boundary coordinates of “x”, “y”, “z” in meter.

• Variable00Interval, Variable01Interval,Variable02Interval— Type “double”; Value
of the grid size of “x”, “y”, “z” in meter.

• Variable00Dimension,Variable01Dimension, Variable02Dimension—Type “long”; Value
of total number of grid points in “x”, “y”, “z”. For example: Variable00Dimension =(Variable00Max-
Variable00Min)/Variable00Interval + 1.

N.B.: Particles are injected into the field region with z=0. Hence, one would normally want
Variable02Min=0. If Variable02Min<0, data ahead of the injection point.

259

Figure 1: Illustration of coordinate system and magnet definition.

260

Figure 2: Example of SDDS input file. The column x index, y index, z index is not the necessary
part, it’s shown here just for clarifying how the data is arranged

261

FTRFMODE

10.34 FTRFMODE—One or more beam-driven TM dipole modes of an RF
cavity, with data from a file.

One or more beam-driven TM dipole modes of an RF cavity, with data from a file.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

FILENAME STRING NULL input file

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 20 number of bins for current his-
togram

RIGID UNTIL PASS long 0 don’t affect the beam until this
pass

USE SYMM DATA long 0 use ”Symm” columns from
URMEL output file?

DX M double 0.0 misalignment

DY M double 0.0 misalignment

XFACTOR double 1 factor by which to multiply
shunt impedances

YFACTOR double 1 factor by which to multiply
shunt impedances

CUTOFF HZ double 0.0 If >0, cutoff frequency. Modes
above this frequency are ig-
nored.

OUTPUT FILE STRING NULL Output file for voltage in each
mode.

FLUSH INTERVAL long 1 Interval in passes at which to
flush output data.

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the
impedance to full strength.

RESET FOR EACH STEP long 1 If nonzero, voltage and phase
are reset for each simulation
step.

LONG RANGE ONLY long 0 If nonzero, induced voltage
from present turn does not af-
fect bunch. Short range wake
should be included via WAKE
or ZLONGIT element.

N CAVITIES long 1 effect is multiplied by this
number, simulating N identi-
cal cavities

262

FTRFMODE continued

One or more beam-driven TM dipole modes of an RF cavity, with data from a file.
Parameter Name Units Type Default Description

BUNCHED BEAM MODE long 1 If non-zero, then do calcula-
tions bunch-by-bunch.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a set of beam-driven dipole modes in a cavity using the fundamental
theorem of beam loading and phasor rotation. It is similar to TRFMODE, but it allows faster simu-
lation of more than one mode. Also, the mode data is specified in an SDDS file. This file can be
generated using the APS version of URMEL, or by hand. It must have the following columns and
units:

1. Frequency — The frequency of the mode in Hz. Floating point.

2. Q — The quality factor. Floating point.

3. ShuntImpedance or ShuntImpedanceSymm — The shunt impedance in Ohms/m, defined
as V 2/(2 ∗ P)/x or V 2/(2 ∗ P)/y (i.e., “circuit definition”). Floating point. By default,
ShuntImpedance is used. However, if the parameter USE_SYMM_DATA is non-zero, then ShuntImpedanceSymm
is used. The latter is the full-cavity shunt impedance that URMEL computes by assuming
that the input cavity used is one half of a symmetric cavity.

The file may also have the following columns:

1. beta — Normalized load impedance (dimensionless). Floating point. If not given, the β = 0
is assumed for all modes.

2. xMode — If given, then only modes for which the value is nonzero will produce an x-plane
kick. Integer. If not given, all modes affect the x plane.

3. yMode — If given, then only modes for which the value is nonzero will produce an y-plane
kick. Integer. If not given, all modes affect the y plane.

In many simulations, a transient effect may occur when using this element because, in the
context of the simulation, the impedance is switched on instantaneously. This can give a false
indication of the threshold for instability. The RAMP PASSES parameter should be used to prevent
this by slowly ramping the impedance to full strength. This idea is from M. Blaskiewicz (BNL).

Normally, the field dumped in the cavity by one particle affects trailing particles in the same
turn. However, if one is also using a TRWAKE or ZTRANSVSE element to simulate the short-range
wake of the cavity, this would be double-counting. In that case, one can use LONG_RANGE_ONLY=1

to suppress the same-turn effects of the RFMODE element.

263

GFWIGGLER

10.35 GFWIGGLER—Tracks through a wiggler using generate function method
of J. Bahrdt and G. Wuestefeld (BESSY, Berlin, Germany).

Tracks through a wiggler using generate function method of J. Bahrdt and G. Wuestefeld (BESSY,
Berlin, Germany).
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 Total length

B MAX T double 0.0 Maximum on-axis magnetic
field at gap=GAP0 and
equal longitudinal phases of
PHASE 1,2,3,4

SHIM SCALE double 1 Scaling factor of shim correc-
tion field.

DX M double 0.0 Misaligment.

DY M double 0.0 Misaligment.

DZ M double 0.0 Misaligment.

TILT RAD double 0.0 Rotation about beam axis.

PERIODS long 0 Total number of wiggler peri-
ods. Include end poles

STEP long 1 Number of normal periods to
track for each step

ORDER short 0 Order=3 including the 3rd or-
der terms. Otherwise using
2nd order formula.

END POLE short 1 The ending poles are treated
as 2 half periods at each sides
of the wiggler with reducing
field strength, such as 0.25, -
0.75, ..., 0.75, -0.25. Periods
has to > 2

SHIM ON short 0 Include shim correction

INPUT FILE STRING NULL Name of SDDS file with By
harmonic data given at GAP0
and equal longitudinal phases.

SHIM INPUT STRING NULL Name of SDDS file with shim
field integral harmonic data
given at GAP0.

SYNCH RAD short 0 Include classical, single-
particle synchrotron radia-
tion?

ISR short 0 Include incoherent syn-
chrotron radiation (quantum
excitation)?

264

GFWIGGLER continued

Tracks through a wiggler using generate function method of J. Bahrdt and G. Wuestefeld (BESSY,
Berlin, Germany).

Parameter Name Units Type Default Description

ISR1PART short 1 Include ISR for single-particle
beam only if ISR=1 and
ISR1PART=1

X0 M double 0.0 Offset of magnet row center in
meter.

GAP0 M double 0.0 Nominal magnetic gap.

D GAP M double 0.0 Delta gap: actual gap - nomi-
nal gap

PHASE 1 RAD double 0.0 Longitudinal phase of the first
row (top right)

PHASE 2 RAD double 0.0 Longitudinal phase of the sec-
ond row (top left)

PHASE 3 RAD double 0.0 Longitudinal phase of the
third row (bottom left)

PHASE 4 RAD double 0.0 Longitudinal phase of the
fourth row (bottom right)

VERBOSITY short 0 A higher value requires more
detailed printouts related to
computations.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

N.B.: at present this element is not included in computations of beammoments (moments_output
command).

This element simulates a wiggler or undulator using the generate function method given by J.
Bahrdt and G. Wüstefeld (“Symplectic tracking and compensation of dynamic field integrals in
complex undulator structures,” PRSTAB 14, 040703, 2011.).

To use the element, one must supply an SDDS file giving harmonic analysis of the wiggler field.
The field expansion used by the code is for a wiggler working at the nominal gap and provide pure
horizontal deflecting to the on-axis beam. See CWIGGLER, horizontal wiggler with normal poles, for
detail explaination of the field expansion and format of the input file. Besides the required columns
of Cmn, KxOverKw, KyOverKw, and KzOverKw by the CWIGGLER elements, two more input columns
are needed:

• The longitudinal harmonic number, n, in column zHarm.

• The horizontal harmonic number of l, in column xHarm.

265

If a file include all required columns from CWIGGLER and GFWIGGLER then user can use either of the
both methods for simulating a horizontal planar wiggler.

An universal wiggler field, which be used for generating an arbitrary polarization, can be derived
by given different longitudinal phase parameters: PHASE 1,2,3,4. The photon energy can be varied
by a non-zero D GAP value.

266

HISTOGRAM

10.36 HISTOGRAM—Request for histograms of particle coordinates to be out-
put to SDDS file.

Request for histograms of particle coordinates to be output to SDDS file.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes
Parameter Name Units Type Default Description

FILENAME STRING filename for histogram output,
possibly incomplete (see be-
low)

INTERVAL long 1 interval in passes between out-
put

START PASS long 0 starting pass for output

BINS long 50 number of bins

FIXED BIN SIZE short 0 if nonzero, bin size is fixed af-
ter the first histogram is made

X DATA short 1 histogram x and x’?

Y DATA short 1 histogram y and y’?

LONGIT DATA short 1 histogram t and p?

BIN SIZE FACTOR double 1 multiply computed bin size by
this factor before histogram-
ming

NORMALIZE short 1 normalize histogram with bin
size and number of particles?

DISABLE short 0 If nonzero, no output will be
generated.

SPARSE short 0 If nonzero, only bins with non-
zero counts will be output.

START PID long -1 starting particleID for parti-
cles to include

END PID long -1 ending particleID for particles
to include

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

The output filename may be an incomplete filename. In the case of the HISTOGRAM point
element, this means it may contain one instance of the string format specification “%s” and one
occurence of an integer format specification (e.g., “%ld”). elegant will replace the format with
the rootname (see run_setup) and the latter with the element’s occurrence number. For example,

267

suppose you had a repetitive lattice defined as follows:

H1: HISTOGRAM,FILENAME=’’%s-%03ld.h1’’

Q1: QUAD,L=0.1,K1=1

D: DRIFT,L=1

Q2: QUAD,L=0.1,K1=-1

CELL: LINE=(H1,Q1,D,2*Q2,D,Q1)

BL: LINE=(100*CELL)

The element H1 appears 100 times. Each instance will result in a new file being produced. Successive
instances have names like “rootname-001.h1”, “rootname-002.h1”, “rootname-003.h1”, and so on
up to “rootname-100.h1”. (If instead of “%03ld” you used “%ld”, the names would be “rootname-
1.h1”, “rootname-2.h1”, etc. up to “rootname-100.h1”. This is generally not as convenient as the
names don’t sort into occurrence order.)

The files can easily be plotted together, as in

% sddsplot -column=dt,dtFrequency *-???.h1 -separate

They may also be combined into a single file, as in

% sddscombine *-???.h1 all.h1

In passing, note that if H1 was defined as

H1: HISTOGRAM,FILENAME=’’%s.h1’’

or

H1: HISTOGRAM,FILENAME=’’output.h1’’

only a single file would be produced, containing output from the last instance only.

268

HKICK

10.37 HKICK—A horizontal steering dipole implemented as a matrix, up to
2nd order. Use EHKICK for symplectic tracking.

A horizontal steering dipole implemented as a matrix, up to 2nd order. Use EHKICK for symplectic
tracking.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

KICK RAD double 0.0 kick strength

TILT RAD double 0.0 rotation about longitudinal
axis

B2 1/M2 double 0.0 normalized sextupole strength
(kick = KICK*(1+B2*x2̂)
when y=0)

CALIBRATION double 1 strength multiplier

EDGE EFFECTS short 0 include edge effects?

ORDER short 0 matrix order

STEERING short 1 use for steering?

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

LERAD double 0.0 if L=0, use this length for ra-
diation computations

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

269

HKPOLY

10.38 HKPOLY—Applies kick according to a Hamiltonian that’s a polynomial
function of x and y together with a generalized drift also given as a
polynomial of qx and qy

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no

270

Parameter Name Units Type Default Description

L M double 0.0 length for geometry only, ig-
nored in tracking

K00 double 0.0 Coefficient of polynomial for
kicks—ignored

K01 double 0.0 Coefficient of polynomial for
kicks

K02 double 0.0 Coefficient of polynomial for
kicks

K03 double 0.0 Coefficient of polynomial for
kicks

K04 double 0.0 Coefficient of polynomial for
kicks

K05 double 0.0 Coefficient of polynomial for
kicks

K06 double 0.0 Coefficient of polynomial for
kicks

K10 double 0.0 Coefficient of polynomial for
kicks

K11 double 0.0 Coefficient of polynomial for
kicks

K12 double 0.0 Coefficient of polynomial for
kicks

K13 double 0.0 Coefficient of polynomial for
kicks

K14 double 0.0 Coefficient of polynomial for
kicks

K15 double 0.0 Coefficient of polynomial for
kicks

K16 double 0.0 Coefficient of polynomial for
kicks

K20 double 0.0 Coefficient of polynomial for
kicks

K21 double 0.0 Coefficient of polynomial for
kicks

K22 double 0.0 Coefficient of polynomial for
kicks

271

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

K23 double 0.0 Coefficient of polynomial for
kicks

K24 double 0.0 Coefficient of polynomial for
kicks

K25 double 0.0 Coefficient of polynomial for
kicks

K26 double 0.0 Coefficient of polynomial for
kicks

K30 double 0.0 Coefficient of polynomial for
kicks

K31 double 0.0 Coefficient of polynomial for
kicks

K32 double 0.0 Coefficient of polynomial for
kicks

K33 double 0.0 Coefficient of polynomial for
kicks

K34 double 0.0 Coefficient of polynomial for
kicks

K35 double 0.0 Coefficient of polynomial for
kicks

K36 double 0.0 Coefficient of polynomial for
kicks

K40 double 0.0 Coefficient of polynomial for
kicks

K41 double 0.0 Coefficient of polynomial for
kicks

K42 double 0.0 Coefficient of polynomial for
kicks

K43 double 0.0 Coefficient of polynomial for
kicks

K44 double 0.0 Coefficient of polynomial for
kicks

K45 double 0.0 Coefficient of polynomial for
kicks

K46 double 0.0 Coefficient of polynomial for
kicks

272

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

K50 double 0.0 Coefficient of polynomial for
kicks

K51 double 0.0 Coefficient of polynomial for
kicks

K52 double 0.0 Coefficient of polynomial for
kicks

K53 double 0.0 Coefficient of polynomial for
kicks

K54 double 0.0 Coefficient of polynomial for
kicks

K55 double 0.0 Coefficient of polynomial for
kicks

K56 double 0.0 Coefficient of polynomial for
kicks

K60 double 0.0 Coefficient of polynomial for
kicks

K61 double 0.0 Coefficient of polynomial for
kicks

K62 double 0.0 Coefficient of polynomial for
kicks

K63 double 0.0 Coefficient of polynomial for
kicks

K64 double 0.0 Coefficient of polynomial for
kicks

K65 double 0.0 Coefficient of polynomial for
kicks

K66 double 0.0 Coefficient of polynomial for
kicks

D00 double 0.0 Coefficient of polynomial for
generalized drift—ignored

D01 double 0.0 Coefficient of polynomial for
generalized drift

D02 double 0.0 Coefficient of polynomial for
generalized drift

D03 double 0.0 Coefficient of polynomial for
generalized drift

273

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

D04 double 0.0 Coefficient of polynomial for
generalized drift

D05 double 0.0 Coefficient of polynomial for
generalized drift

D06 double 0.0 Coefficient of polynomial for
generalized drift

D10 double 0.0 Coefficient of polynomial for
generalized drift

D11 double 0.0 Coefficient of polynomial for
generalized drift

D12 double 0.0 Coefficient of polynomial for
generalized drift

D13 double 0.0 Coefficient of polynomial for
generalized drift

D14 double 0.0 Coefficient of polynomial for
generalized drift

D15 double 0.0 Coefficient of polynomial for
generalized drift

D16 double 0.0 Coefficient of polynomial for
generalized drift

D20 double 0.0 Coefficient of polynomial for
generalized drift

D21 double 0.0 Coefficient of polynomial for
generalized drift

D22 double 0.0 Coefficient of polynomial for
generalized drift

D23 double 0.0 Coefficient of polynomial for
generalized drift

D24 double 0.0 Coefficient of polynomial for
generalized drift

D25 double 0.0 Coefficient of polynomial for
generalized drift

D26 double 0.0 Coefficient of polynomial for
generalized drift

D30 double 0.0 Coefficient of polynomial for
generalized drift

274

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

D31 double 0.0 Coefficient of polynomial for
generalized drift

D32 double 0.0 Coefficient of polynomial for
generalized drift

D33 double 0.0 Coefficient of polynomial for
generalized drift

D34 double 0.0 Coefficient of polynomial for
generalized drift

D35 double 0.0 Coefficient of polynomial for
generalized drift

D36 double 0.0 Coefficient of polynomial for
generalized drift

D40 double 0.0 Coefficient of polynomial for
generalized drift

D41 double 0.0 Coefficient of polynomial for
generalized drift

D42 double 0.0 Coefficient of polynomial for
generalized drift

D43 double 0.0 Coefficient of polynomial for
generalized drift

D44 double 0.0 Coefficient of polynomial for
generalized drift

D45 double 0.0 Coefficient of polynomial for
generalized drift

D46 double 0.0 Coefficient of polynomial for
generalized drift

D50 double 0.0 Coefficient of polynomial for
generalized drift

D51 double 0.0 Coefficient of polynomial for
generalized drift

D52 double 0.0 Coefficient of polynomial for
generalized drift

D53 double 0.0 Coefficient of polynomial for
generalized drift

D54 double 0.0 Coefficient of polynomial for
generalized drift

275

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

D55 double 0.0 Coefficient of polynomial for
generalized drift

D56 double 0.0 Coefficient of polynomial for
generalized drift

D60 double 0.0 Coefficient of polynomial for
generalized drift

D61 double 0.0 Coefficient of polynomial for
generalized drift

D62 double 0.0 Coefficient of polynomial for
generalized drift

D63 double 0.0 Coefficient of polynomial for
generalized drift

D64 double 0.0 Coefficient of polynomial for
generalized drift

D65 double 0.0 Coefficient of polynomial for
generalized drift

D66 double 0.0 Coefficient of polynomial for
generalized drift

E000 double 0.0 Coefficient of polynomial for
type 2 drifts

E001 double 0.0 Coefficient of polynomial for
type 2 drifts

E002 double 0.0 Coefficient of polynomial for
type 2 drifts

E003 double 0.0 Coefficient of polynomial for
type 2 drifts

E004 double 0.0 Coefficient of polynomial for
type 2 drifts

E005 double 0.0 Coefficient of polynomial for
type 2 drifts

E006 double 0.0 Coefficient of polynomial for
type 2 drifts

E010 double 0.0 Coefficient of polynomial for
type 2 drifts

E011 double 0.0 Coefficient of polynomial for
type 2 drifts

276

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E012 double 0.0 Coefficient of polynomial for
type 2 drifts

E013 double 0.0 Coefficient of polynomial for
type 2 drifts

E014 double 0.0 Coefficient of polynomial for
type 2 drifts

E015 double 0.0 Coefficient of polynomial for
type 2 drifts

E016 double 0.0 Coefficient of polynomial for
type 2 drifts

E020 double 0.0 Coefficient of polynomial for
type 2 drifts

E021 double 0.0 Coefficient of polynomial for
type 2 drifts

E022 double 0.0 Coefficient of polynomial for
type 2 drifts

E023 double 0.0 Coefficient of polynomial for
type 2 drifts

E024 double 0.0 Coefficient of polynomial for
type 2 drifts

E025 double 0.0 Coefficient of polynomial for
type 2 drifts

E026 double 0.0 Coefficient of polynomial for
type 2 drifts

E030 double 0.0 Coefficient of polynomial for
type 2 drifts

E031 double 0.0 Coefficient of polynomial for
type 2 drifts

E032 double 0.0 Coefficient of polynomial for
type 2 drifts

E033 double 0.0 Coefficient of polynomial for
type 2 drifts

E034 double 0.0 Coefficient of polynomial for
type 2 drifts

E035 double 0.0 Coefficient of polynomial for
type 2 drifts

277

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E036 double 0.0 Coefficient of polynomial for
type 2 drifts

E040 double 0.0 Coefficient of polynomial for
type 2 drifts

E041 double 0.0 Coefficient of polynomial for
type 2 drifts

E042 double 0.0 Coefficient of polynomial for
type 2 drifts

E043 double 0.0 Coefficient of polynomial for
type 2 drifts

E044 double 0.0 Coefficient of polynomial for
type 2 drifts

E045 double 0.0 Coefficient of polynomial for
type 2 drifts

E046 double 0.0 Coefficient of polynomial for
type 2 drifts

E050 double 0.0 Coefficient of polynomial for
type 2 drifts

E051 double 0.0 Coefficient of polynomial for
type 2 drifts

E052 double 0.0 Coefficient of polynomial for
type 2 drifts

E053 double 0.0 Coefficient of polynomial for
type 2 drifts

E054 double 0.0 Coefficient of polynomial for
type 2 drifts

E055 double 0.0 Coefficient of polynomial for
type 2 drifts

E056 double 0.0 Coefficient of polynomial for
type 2 drifts

E060 double 0.0 Coefficient of polynomial for
type 2 drifts

E061 double 0.0 Coefficient of polynomial for
type 2 drifts

E062 double 0.0 Coefficient of polynomial for
type 2 drifts

278

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E063 double 0.0 Coefficient of polynomial for
type 2 drifts

E064 double 0.0 Coefficient of polynomial for
type 2 drifts

E065 double 0.0 Coefficient of polynomial for
type 2 drifts

E066 double 0.0 Coefficient of polynomial for
type 2 drifts

E100 double 0.0 Coefficient of polynomial for
type 2 drifts

E101 double 0.0 Coefficient of polynomial for
type 2 drifts

E102 double 0.0 Coefficient of polynomial for
type 2 drifts

E103 double 0.0 Coefficient of polynomial for
type 2 drifts

E104 double 0.0 Coefficient of polynomial for
type 2 drifts

E105 double 0.0 Coefficient of polynomial for
type 2 drifts

E106 double 0.0 Coefficient of polynomial for
type 2 drifts

E110 double 0.0 Coefficient of polynomial for
type 2 drifts

E111 double 0.0 Coefficient of polynomial for
type 2 drifts

E112 double 0.0 Coefficient of polynomial for
type 2 drifts

E113 double 0.0 Coefficient of polynomial for
type 2 drifts

E114 double 0.0 Coefficient of polynomial for
type 2 drifts

E115 double 0.0 Coefficient of polynomial for
type 2 drifts

E116 double 0.0 Coefficient of polynomial for
type 2 drifts

279

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E120 double 0.0 Coefficient of polynomial for
type 2 drifts

E121 double 0.0 Coefficient of polynomial for
type 2 drifts

E122 double 0.0 Coefficient of polynomial for
type 2 drifts

E123 double 0.0 Coefficient of polynomial for
type 2 drifts

E124 double 0.0 Coefficient of polynomial for
type 2 drifts

E125 double 0.0 Coefficient of polynomial for
type 2 drifts

E126 double 0.0 Coefficient of polynomial for
type 2 drifts

E130 double 0.0 Coefficient of polynomial for
type 2 drifts

E131 double 0.0 Coefficient of polynomial for
type 2 drifts

E132 double 0.0 Coefficient of polynomial for
type 2 drifts

E133 double 0.0 Coefficient of polynomial for
type 2 drifts

E134 double 0.0 Coefficient of polynomial for
type 2 drifts

E135 double 0.0 Coefficient of polynomial for
type 2 drifts

E136 double 0.0 Coefficient of polynomial for
type 2 drifts

E140 double 0.0 Coefficient of polynomial for
type 2 drifts

E141 double 0.0 Coefficient of polynomial for
type 2 drifts

E142 double 0.0 Coefficient of polynomial for
type 2 drifts

E143 double 0.0 Coefficient of polynomial for
type 2 drifts

280

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E144 double 0.0 Coefficient of polynomial for
type 2 drifts

E145 double 0.0 Coefficient of polynomial for
type 2 drifts

E146 double 0.0 Coefficient of polynomial for
type 2 drifts

E150 double 0.0 Coefficient of polynomial for
type 2 drifts

E151 double 0.0 Coefficient of polynomial for
type 2 drifts

E152 double 0.0 Coefficient of polynomial for
type 2 drifts

E153 double 0.0 Coefficient of polynomial for
type 2 drifts

E154 double 0.0 Coefficient of polynomial for
type 2 drifts

E155 double 0.0 Coefficient of polynomial for
type 2 drifts

E156 double 0.0 Coefficient of polynomial for
type 2 drifts

E160 double 0.0 Coefficient of polynomial for
type 2 drifts

E161 double 0.0 Coefficient of polynomial for
type 2 drifts

E162 double 0.0 Coefficient of polynomial for
type 2 drifts

E163 double 0.0 Coefficient of polynomial for
type 2 drifts

E164 double 0.0 Coefficient of polynomial for
type 2 drifts

E165 double 0.0 Coefficient of polynomial for
type 2 drifts

E166 double 0.0 Coefficient of polynomial for
type 2 drifts

E200 double 0.0 Coefficient of polynomial for
type 2 drifts

281

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E201 double 0.0 Coefficient of polynomial for
type 2 drifts

E202 double 0.0 Coefficient of polynomial for
type 2 drifts

E203 double 0.0 Coefficient of polynomial for
type 2 drifts

E204 double 0.0 Coefficient of polynomial for
type 2 drifts

E205 double 0.0 Coefficient of polynomial for
type 2 drifts

E206 double 0.0 Coefficient of polynomial for
type 2 drifts

E210 double 0.0 Coefficient of polynomial for
type 2 drifts

E211 double 0.0 Coefficient of polynomial for
type 2 drifts

E212 double 0.0 Coefficient of polynomial for
type 2 drifts

E213 double 0.0 Coefficient of polynomial for
type 2 drifts

E214 double 0.0 Coefficient of polynomial for
type 2 drifts

E215 double 0.0 Coefficient of polynomial for
type 2 drifts

E216 double 0.0 Coefficient of polynomial for
type 2 drifts

E220 double 0.0 Coefficient of polynomial for
type 2 drifts

E221 double 0.0 Coefficient of polynomial for
type 2 drifts

E222 double 0.0 Coefficient of polynomial for
type 2 drifts

E223 double 0.0 Coefficient of polynomial for
type 2 drifts

E224 double 0.0 Coefficient of polynomial for
type 2 drifts

282

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E225 double 0.0 Coefficient of polynomial for
type 2 drifts

E226 double 0.0 Coefficient of polynomial for
type 2 drifts

E230 double 0.0 Coefficient of polynomial for
type 2 drifts

E231 double 0.0 Coefficient of polynomial for
type 2 drifts

E232 double 0.0 Coefficient of polynomial for
type 2 drifts

E233 double 0.0 Coefficient of polynomial for
type 2 drifts

E234 double 0.0 Coefficient of polynomial for
type 2 drifts

E235 double 0.0 Coefficient of polynomial for
type 2 drifts

E236 double 0.0 Coefficient of polynomial for
type 2 drifts

E240 double 0.0 Coefficient of polynomial for
type 2 drifts

E241 double 0.0 Coefficient of polynomial for
type 2 drifts

E242 double 0.0 Coefficient of polynomial for
type 2 drifts

E243 double 0.0 Coefficient of polynomial for
type 2 drifts

E244 double 0.0 Coefficient of polynomial for
type 2 drifts

E245 double 0.0 Coefficient of polynomial for
type 2 drifts

E246 double 0.0 Coefficient of polynomial for
type 2 drifts

E250 double 0.0 Coefficient of polynomial for
type 2 drifts

E251 double 0.0 Coefficient of polynomial for
type 2 drifts

283

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E252 double 0.0 Coefficient of polynomial for
type 2 drifts

E253 double 0.0 Coefficient of polynomial for
type 2 drifts

E254 double 0.0 Coefficient of polynomial for
type 2 drifts

E255 double 0.0 Coefficient of polynomial for
type 2 drifts

E256 double 0.0 Coefficient of polynomial for
type 2 drifts

E260 double 0.0 Coefficient of polynomial for
type 2 drifts

E261 double 0.0 Coefficient of polynomial for
type 2 drifts

E262 double 0.0 Coefficient of polynomial for
type 2 drifts

E263 double 0.0 Coefficient of polynomial for
type 2 drifts

E264 double 0.0 Coefficient of polynomial for
type 2 drifts

E265 double 0.0 Coefficient of polynomial for
type 2 drifts

E266 double 0.0 Coefficient of polynomial for
type 2 drifts

E300 double 0.0 Coefficient of polynomial for
type 2 drifts

E301 double 0.0 Coefficient of polynomial for
type 2 drifts

E302 double 0.0 Coefficient of polynomial for
type 2 drifts

E303 double 0.0 Coefficient of polynomial for
type 2 drifts

E304 double 0.0 Coefficient of polynomial for
type 2 drifts

E305 double 0.0 Coefficient of polynomial for
type 2 drifts

284

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E306 double 0.0 Coefficient of polynomial for
type 2 drifts

E310 double 0.0 Coefficient of polynomial for
type 2 drifts

E311 double 0.0 Coefficient of polynomial for
type 2 drifts

E312 double 0.0 Coefficient of polynomial for
type 2 drifts

E313 double 0.0 Coefficient of polynomial for
type 2 drifts

E314 double 0.0 Coefficient of polynomial for
type 2 drifts

E315 double 0.0 Coefficient of polynomial for
type 2 drifts

E316 double 0.0 Coefficient of polynomial for
type 2 drifts

E320 double 0.0 Coefficient of polynomial for
type 2 drifts

E321 double 0.0 Coefficient of polynomial for
type 2 drifts

E322 double 0.0 Coefficient of polynomial for
type 2 drifts

E323 double 0.0 Coefficient of polynomial for
type 2 drifts

E324 double 0.0 Coefficient of polynomial for
type 2 drifts

E325 double 0.0 Coefficient of polynomial for
type 2 drifts

E326 double 0.0 Coefficient of polynomial for
type 2 drifts

E330 double 0.0 Coefficient of polynomial for
type 2 drifts

E331 double 0.0 Coefficient of polynomial for
type 2 drifts

E332 double 0.0 Coefficient of polynomial for
type 2 drifts

285

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E333 double 0.0 Coefficient of polynomial for
type 2 drifts

E334 double 0.0 Coefficient of polynomial for
type 2 drifts

E335 double 0.0 Coefficient of polynomial for
type 2 drifts

E336 double 0.0 Coefficient of polynomial for
type 2 drifts

E340 double 0.0 Coefficient of polynomial for
type 2 drifts

E341 double 0.0 Coefficient of polynomial for
type 2 drifts

E342 double 0.0 Coefficient of polynomial for
type 2 drifts

E343 double 0.0 Coefficient of polynomial for
type 2 drifts

E344 double 0.0 Coefficient of polynomial for
type 2 drifts

E345 double 0.0 Coefficient of polynomial for
type 2 drifts

E346 double 0.0 Coefficient of polynomial for
type 2 drifts

E350 double 0.0 Coefficient of polynomial for
type 2 drifts

E351 double 0.0 Coefficient of polynomial for
type 2 drifts

E352 double 0.0 Coefficient of polynomial for
type 2 drifts

E353 double 0.0 Coefficient of polynomial for
type 2 drifts

E354 double 0.0 Coefficient of polynomial for
type 2 drifts

E355 double 0.0 Coefficient of polynomial for
type 2 drifts

E356 double 0.0 Coefficient of polynomial for
type 2 drifts

286

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E360 double 0.0 Coefficient of polynomial for
type 2 drifts

E361 double 0.0 Coefficient of polynomial for
type 2 drifts

E362 double 0.0 Coefficient of polynomial for
type 2 drifts

E363 double 0.0 Coefficient of polynomial for
type 2 drifts

E364 double 0.0 Coefficient of polynomial for
type 2 drifts

E365 double 0.0 Coefficient of polynomial for
type 2 drifts

E366 double 0.0 Coefficient of polynomial for
type 2 drifts

E400 double 0.0 Coefficient of polynomial for
type 2 drifts

E401 double 0.0 Coefficient of polynomial for
type 2 drifts

E402 double 0.0 Coefficient of polynomial for
type 2 drifts

E403 double 0.0 Coefficient of polynomial for
type 2 drifts

E404 double 0.0 Coefficient of polynomial for
type 2 drifts

E405 double 0.0 Coefficient of polynomial for
type 2 drifts

E406 double 0.0 Coefficient of polynomial for
type 2 drifts

E410 double 0.0 Coefficient of polynomial for
type 2 drifts

E411 double 0.0 Coefficient of polynomial for
type 2 drifts

E412 double 0.0 Coefficient of polynomial for
type 2 drifts

E413 double 0.0 Coefficient of polynomial for
type 2 drifts

287

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E414 double 0.0 Coefficient of polynomial for
type 2 drifts

E415 double 0.0 Coefficient of polynomial for
type 2 drifts

E416 double 0.0 Coefficient of polynomial for
type 2 drifts

E420 double 0.0 Coefficient of polynomial for
type 2 drifts

E421 double 0.0 Coefficient of polynomial for
type 2 drifts

E422 double 0.0 Coefficient of polynomial for
type 2 drifts

E423 double 0.0 Coefficient of polynomial for
type 2 drifts

E424 double 0.0 Coefficient of polynomial for
type 2 drifts

E425 double 0.0 Coefficient of polynomial for
type 2 drifts

E426 double 0.0 Coefficient of polynomial for
type 2 drifts

E430 double 0.0 Coefficient of polynomial for
type 2 drifts

E431 double 0.0 Coefficient of polynomial for
type 2 drifts

E432 double 0.0 Coefficient of polynomial for
type 2 drifts

E433 double 0.0 Coefficient of polynomial for
type 2 drifts

E434 double 0.0 Coefficient of polynomial for
type 2 drifts

E435 double 0.0 Coefficient of polynomial for
type 2 drifts

E436 double 0.0 Coefficient of polynomial for
type 2 drifts

E440 double 0.0 Coefficient of polynomial for
type 2 drifts

288

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E441 double 0.0 Coefficient of polynomial for
type 2 drifts

E442 double 0.0 Coefficient of polynomial for
type 2 drifts

E443 double 0.0 Coefficient of polynomial for
type 2 drifts

E444 double 0.0 Coefficient of polynomial for
type 2 drifts

E445 double 0.0 Coefficient of polynomial for
type 2 drifts

E446 double 0.0 Coefficient of polynomial for
type 2 drifts

E450 double 0.0 Coefficient of polynomial for
type 2 drifts

E451 double 0.0 Coefficient of polynomial for
type 2 drifts

E452 double 0.0 Coefficient of polynomial for
type 2 drifts

E453 double 0.0 Coefficient of polynomial for
type 2 drifts

E454 double 0.0 Coefficient of polynomial for
type 2 drifts

E455 double 0.0 Coefficient of polynomial for
type 2 drifts

E456 double 0.0 Coefficient of polynomial for
type 2 drifts

E460 double 0.0 Coefficient of polynomial for
type 2 drifts

E461 double 0.0 Coefficient of polynomial for
type 2 drifts

E462 double 0.0 Coefficient of polynomial for
type 2 drifts

E463 double 0.0 Coefficient of polynomial for
type 2 drifts

E464 double 0.0 Coefficient of polynomial for
type 2 drifts

289

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E465 double 0.0 Coefficient of polynomial for
type 2 drifts

E466 double 0.0 Coefficient of polynomial for
type 2 drifts

E500 double 0.0 Coefficient of polynomial for
type 2 drifts

E501 double 0.0 Coefficient of polynomial for
type 2 drifts

E502 double 0.0 Coefficient of polynomial for
type 2 drifts

E503 double 0.0 Coefficient of polynomial for
type 2 drifts

E504 double 0.0 Coefficient of polynomial for
type 2 drifts

E505 double 0.0 Coefficient of polynomial for
type 2 drifts

E506 double 0.0 Coefficient of polynomial for
type 2 drifts

E510 double 0.0 Coefficient of polynomial for
type 2 drifts

E511 double 0.0 Coefficient of polynomial for
type 2 drifts

E512 double 0.0 Coefficient of polynomial for
type 2 drifts

E513 double 0.0 Coefficient of polynomial for
type 2 drifts

E514 double 0.0 Coefficient of polynomial for
type 2 drifts

E515 double 0.0 Coefficient of polynomial for
type 2 drifts

E516 double 0.0 Coefficient of polynomial for
type 2 drifts

E520 double 0.0 Coefficient of polynomial for
type 2 drifts

E521 double 0.0 Coefficient of polynomial for
type 2 drifts

290

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E522 double 0.0 Coefficient of polynomial for
type 2 drifts

E523 double 0.0 Coefficient of polynomial for
type 2 drifts

E524 double 0.0 Coefficient of polynomial for
type 2 drifts

E525 double 0.0 Coefficient of polynomial for
type 2 drifts

E526 double 0.0 Coefficient of polynomial for
type 2 drifts

E530 double 0.0 Coefficient of polynomial for
type 2 drifts

E531 double 0.0 Coefficient of polynomial for
type 2 drifts

E532 double 0.0 Coefficient of polynomial for
type 2 drifts

E533 double 0.0 Coefficient of polynomial for
type 2 drifts

E534 double 0.0 Coefficient of polynomial for
type 2 drifts

E535 double 0.0 Coefficient of polynomial for
type 2 drifts

E536 double 0.0 Coefficient of polynomial for
type 2 drifts

E540 double 0.0 Coefficient of polynomial for
type 2 drifts

E541 double 0.0 Coefficient of polynomial for
type 2 drifts

E542 double 0.0 Coefficient of polynomial for
type 2 drifts

E543 double 0.0 Coefficient of polynomial for
type 2 drifts

E544 double 0.0 Coefficient of polynomial for
type 2 drifts

E545 double 0.0 Coefficient of polynomial for
type 2 drifts

291

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E546 double 0.0 Coefficient of polynomial for
type 2 drifts

E550 double 0.0 Coefficient of polynomial for
type 2 drifts

E551 double 0.0 Coefficient of polynomial for
type 2 drifts

E552 double 0.0 Coefficient of polynomial for
type 2 drifts

E553 double 0.0 Coefficient of polynomial for
type 2 drifts

E554 double 0.0 Coefficient of polynomial for
type 2 drifts

E555 double 0.0 Coefficient of polynomial for
type 2 drifts

E556 double 0.0 Coefficient of polynomial for
type 2 drifts

E560 double 0.0 Coefficient of polynomial for
type 2 drifts

E561 double 0.0 Coefficient of polynomial for
type 2 drifts

E562 double 0.0 Coefficient of polynomial for
type 2 drifts

E563 double 0.0 Coefficient of polynomial for
type 2 drifts

E564 double 0.0 Coefficient of polynomial for
type 2 drifts

E565 double 0.0 Coefficient of polynomial for
type 2 drifts

E566 double 0.0 Coefficient of polynomial for
type 2 drifts

E600 double 0.0 Coefficient of polynomial for
type 2 drifts

E601 double 0.0 Coefficient of polynomial for
type 2 drifts

E602 double 0.0 Coefficient of polynomial for
type 2 drifts

292

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E603 double 0.0 Coefficient of polynomial for
type 2 drifts

E604 double 0.0 Coefficient of polynomial for
type 2 drifts

E605 double 0.0 Coefficient of polynomial for
type 2 drifts

E606 double 0.0 Coefficient of polynomial for
type 2 drifts

E610 double 0.0 Coefficient of polynomial for
type 2 drifts

E611 double 0.0 Coefficient of polynomial for
type 2 drifts

E612 double 0.0 Coefficient of polynomial for
type 2 drifts

E613 double 0.0 Coefficient of polynomial for
type 2 drifts

E614 double 0.0 Coefficient of polynomial for
type 2 drifts

E615 double 0.0 Coefficient of polynomial for
type 2 drifts

E616 double 0.0 Coefficient of polynomial for
type 2 drifts

E620 double 0.0 Coefficient of polynomial for
type 2 drifts

E621 double 0.0 Coefficient of polynomial for
type 2 drifts

E622 double 0.0 Coefficient of polynomial for
type 2 drifts

E623 double 0.0 Coefficient of polynomial for
type 2 drifts

E624 double 0.0 Coefficient of polynomial for
type 2 drifts

E625 double 0.0 Coefficient of polynomial for
type 2 drifts

E626 double 0.0 Coefficient of polynomial for
type 2 drifts

293

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E630 double 0.0 Coefficient of polynomial for
type 2 drifts

E631 double 0.0 Coefficient of polynomial for
type 2 drifts

E632 double 0.0 Coefficient of polynomial for
type 2 drifts

E633 double 0.0 Coefficient of polynomial for
type 2 drifts

E634 double 0.0 Coefficient of polynomial for
type 2 drifts

E635 double 0.0 Coefficient of polynomial for
type 2 drifts

E636 double 0.0 Coefficient of polynomial for
type 2 drifts

E640 double 0.0 Coefficient of polynomial for
type 2 drifts

E641 double 0.0 Coefficient of polynomial for
type 2 drifts

E642 double 0.0 Coefficient of polynomial for
type 2 drifts

E643 double 0.0 Coefficient of polynomial for
type 2 drifts

E644 double 0.0 Coefficient of polynomial for
type 2 drifts

E645 double 0.0 Coefficient of polynomial for
type 2 drifts

E646 double 0.0 Coefficient of polynomial for
type 2 drifts

E650 double 0.0 Coefficient of polynomial for
type 2 drifts

E651 double 0.0 Coefficient of polynomial for
type 2 drifts

E652 double 0.0 Coefficient of polynomial for
type 2 drifts

E653 double 0.0 Coefficient of polynomial for
type 2 drifts

294

HKPOLY continued

Applies kick according to a Hamiltonian that’s a polynomial function of x and y together with a
generalized drift also given as a polynomial of qx and qy
Parameter Name Units Type Default Description

E654 double 0.0 Coefficient of polynomial for
type 2 drifts

E655 double 0.0 Coefficient of polynomial for
type 2 drifts

E656 double 0.0 Coefficient of polynomial for
type 2 drifts

E660 double 0.0 Coefficient of polynomial for
type 2 drifts

E661 double 0.0 Coefficient of polynomial for
type 2 drifts

E662 double 0.0 Coefficient of polynomial for
type 2 drifts

E663 double 0.0 Coefficient of polynomial for
type 2 drifts

E664 double 0.0 Coefficient of polynomial for
type 2 drifts

E665 double 0.0 Coefficient of polynomial for
type 2 drifts

E666 double 0.0 Coefficient of polynomial for
type 2 drifts

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FACTOR double 1 additional factor to apply

N REPEATS long 1 Number of times to repeat
the drift-kick-drift sequence.
Strength of each application is
reduced by this factor.

DRIFT TYPE short 1 If 1, then use D[i][j]. If 2, then
use E[i][j][k].

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element imposes kicks on the beam according to a Hamiltonian that is a polynomial

295

function of x and y

Hk∆s =
6
∑

i=0

6
∑

j=0

Kijx
iyj (41)

where K00 is ignored. The changes to the momenta are determined via Hamilton’s equations, e.g.,

∆qx = −∂Hk∆s

∂x
(42)

It also implements a generalized drift that is described by another Hamiltonian

Hd∆s = (1 + δ)

6
∑

i=0

6
∑

j=0

Dij

(

qx
1 + δ

)i(qy
1 + δ

)j

(43)

where D00 is ignored. Again, the changes to the positions are determined via Hamilton’s equations,
e.g.,

∆x =
∂Hd∆s

∂qx
(44)

In version 2019.1.0, another option was added for the drift Hamiltonian. This is activated by
setting the paramter DRIFT_TYPE to 2 (the default is 1) and setting the E values instead of the D

values. In this case, the δ dependence is under user control

Hd∆s =
6
∑

i=0

6
∑

j=0

6
∑

k=0

Eijkq
i
xq

j
yδ

k (45)

where E000 is ignored.
In more detail, the drift Hamiltonian is applied on both sides of the kick Hamiltonian, but with

half strength.
For example, a quadrupole of length L with integrated strength K1L could be specified by

setting K20 = −K02 = K1L/2 and D20 = D02 = L/2. A sextupole with integrated strength
K2L could be specified by setting K30 = K2L/6 and K12 = K2L/2 and D20 = D02 = L/2. The
purpose, however, is not to simulate such elements, since they can be more conveniently simulated
with KQUAD or KSEXT. It is rather to simulate elements that may not be described by the usual
multipoles.

296

HMON

10.39 HMON—A horizontal position monitor, accepting a rpn equation for the
readout as a function of the actual position (x).

A horizontal position monitor, accepting a rpn equation for the readout as a function of the actual
position (x).
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

DX M double 0.0 misalignment

DY M double 0.0 misalignment

WEIGHT double 1 weight in correction

TILT double 0.0 rotation about longitudinal
axis

CALIBRATION double 1 calibration factor for readout

SETPOINT M double 0.0 steering setpoint

ORDER short 0 matrix order

READOUT STRING NULL rpn expression for readout (ac-
tual position supplied in vari-
able x)

CO FITPOINT short 0 If nonzero, then closed or-
bit value is placed in variable
<name>#<occurence>.xco

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

297

IBSCATTER

10.40 IBSCATTER—A simulation of intra-beam scattering.

A simulation of intra-beam scattering.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

FACTOR double 1 factor by which to multiply
growth rates before using

DO X long 1 do x-plane scattering?

DO Y long 1 do y-plane scattering?

DO Z long 1 do z-plane scattering?

NSLICE long 1 The number of slices per
bunch

SMOOTH long 1 Use smooth method instead of
random numbers?

FORCE MATCHED TWISS long 0 Force computations to be done
with twiss parameters of the
beamline, not the beam.

ISRING long 1 Is it storage ring?

INTERVAL long 1 Interval in passes at which to
update output file.

FILENAME STRING NULL Output filename.

BUNCHED BEAM MODE long 1 If non-zero, then do calcula-
tions bunch-by-bunch.

VERBOSE long 0 If non-zero, then print updates
during calculations.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is used for simulating intra-beam scattering (IBS) effect. The IBS algorithm is
based on the Bjorken and Mtingwa’s [15] formula, and with an extension of including vertical
dispersion. It can be used for both storage ring and Linac.

To initialize IBS calculation, one or more IBSCATTER elements must be inserted into the
beamline. elegant calculates the integrated IBS growth rates between IBSCATTERs (or from
beginning of the beamline to the first IBSCATTER), then scatter particles at each IBSCATTER
element. Beam’s parameters are updated for use in downstream elements.

This method requires that IBSCATTER can not be installed at the beginning of beamline. The
number of other elements between IBSCATTERs or from the beginning of beamline to the first
IBSCATTER has to be 2 or more. For storage ring, an IBSCATTER must be installed at the end

298

of beamline.
Because the IBS growth rates are energy dependent, special caution is needed for calculations

with accelerating beam. The user needs to split their accelerating cavity into several pieces, so that
γ has no large changes between elements.

The user can examine the calculation through an optional SDDS output file - filename. The
file has a multiple page structure. Each slice at pass i at each IBSCATTER element occupies one
page. Each page contains integrated IBS growth rates between IBSCATTERs (or from beginning
of the beamline to first IBSCATTER) as parameters, and local rates for elements in between as
tabular data.

299

ILMATRIX

10.41 ILMATRIX—An Individualized Linear Matrix for each particle for fast
symplectic tracking with chromatic and amplitude-dependent effects

An Individualized Linear Matrix for each particle for fast symplectic tracking with chromatic and
amplitude-dependent effects
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 Length (used for position and
time-of-flight computation)

NUX double 0.0 Horizontal tune

NUY double 0.0 Vertical tune

NUX1M double 0.0 First chromatic derivative of
the horizontal tune

NUY1M double 0.0 First chromatic derivative of
the vertical tune

NUX2M double 0.0 Second chromatic derivative of
the horizontal tune

NUY2M double 0.0 Second chromatic derivative of
the vertical tune

NUX3M double 0.0 Third chromatic derivative of
the horizontal tune

NUY3M double 0.0 Third chromatic derivative of
the vertical tune

NUX1AX 1/M double 0.0 First amplitude derivative of
the horizontal tune wrt Ax

NUY1AX 1/M double 0.0 First amplitude derivative of
the vertical tune wrt Ax

NUX1AY 1/M double 0.0 First amplitude derivative of
the horizontal tune wrt Ay

NUY1AY 1/M double 0.0 First amplitude derivative of
the vertical tune wrt Ay

NUX2AX 1/M2 double 0.0 Second amplitude derivative of
the horizontal tune wrt Ax

NUY2AX 1/M2 double 0.0 Second amplitude derivative of
the vertical tune wrt Ax

NUX2AY 1/M2 double 0.0 Second amplitude derivative of
the horizontal tune wrt Ay

NUY2AY 1/M2 double 0.0 Second amplitude derivative of
the vertical tune wrt Ay

300

ILMATRIX continued

An Individualized Linear Matrix for each particle for fast symplectic tracking with chromatic and
amplitude-dependent effects
Parameter Name Units Type Default Description

NUX1AX1AY 1/M2 double 0.0 Amplitude derivative of the
horizontal tune wrt Ax and Ay

NUY1AX1AY 1/M2 double 0.0 Amplitude derivative of the
vertical tune wrt Ax and Ay

BETAX M double 0.0 On-momentum horizontal
beta function

BETAY M double 0.0 On-momentum vertical beta
function

BETAX1M M double 0.0 First chromatic derivative of
horizontal beta function

BETAY1M M double 0.0 First chromatic derivative of
vertical beta function

ALPHAX double 0.0 On-momentum horizontal al-
pha function

ALPHAY double 0.0 On-momentum vertical alpha
function

ALPHAX1M double 0.0 First chromatic derivative of
horizontal alpha function

ALPHAY1M double 0.0 First chromatic derivative of
vertical alpha function

ETAX M double 0.0 On-momentum horizontal eta
function

ETAPX double 0.0 On-momentum horizontal eta’
function

ETAY M double 0.0 On-momentum vertical eta
function

ETAPY double 0.0 On-momentum vertical eta’
function

ETAX1 M double 0.0 First chromatic derivative of
horizontal eta function

ETAPX1 double 0.0 First chromatic derivative of
horizontal eta’ function

ETAY1 M double 0.0 First chromatic derivative of
vertical eta function

ETAPY1 double 0.0 First chromatic derivative of
vertical eta’ function

301

ILMATRIX continued

An Individualized Linear Matrix for each particle for fast symplectic tracking with chromatic and
amplitude-dependent effects
Parameter Name Units Type Default Description

ALPHAC double 0.0 First-order momentum com-
paction factor

ALPHAC2 double 0.0 Second-order momentum com-
paction factor

ALPHAC3 double 0.0 Third-order momentum com-
paction factor

DS1AX double 0.0 First amplitude derivative of
the path length wrt Ax

DS1AY double 0.0 First amplitude derivative of
the path length wrt Ay

DS2AX 1/M double 0.0 Second amplitude derivative of
the path length wrt Ax

DS2AY 1/M double 0.0 Second amplitude derivative of
the path length wrt Ay

DS1AX1AY 1/M double 0.0 Amplitude derivative of the
path length wrt Ax and Ay

TILT RAD double 0.0 Rotation angle about the lon-
gitudinal axis.

CROSS RESONANCE short 0 If zero, then particles that
cross an integer or half-integer
resonance are considered lost.

VERBOSITY short 0 If nonzero, then information
about particle losses is printed
out.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element allows fast, symplectic tracking of transport through a periodic cell with chromatic
and amplitude-dependent tunes, beta functions, and dispersion. This is done by computing a linear
matrix for every particle using Twiss parameters, tunes, dispersion, etc., supplied by the user. The
user can also supply selected chromatic and amplitude derivatives of these quantities, which are
used to compute the individual particle’s beta functions, tune, dispersion, etc., which in turn allows
computing the individual particle’s linear matrix.

The starting point is the well-known expression for the one-turn linear matrix in terms of the
lattice functions

Rq =

(

cos 2πνq + αq sin 2πνq βq sin 2πνq
−γq sin 2πνq cos 2πνq − αq sin 2πνq

)

(46)

302

where νq is the tune in the q plane. We can expand the quantities in the matrix using

νq = νq,0 +

3
∑

n=1

(

∂nνq
∂δn

)

0

δn

n!
+

2
∑

n=1

(

∂nνq
∂An

x

)

0

An
x

n!
+

2
∑

n=1

(

∂nνq
∂An

y

)

0

An
y

n!
+

(

∂2νq
∂Ax∂Ay

)

0

AxAy (47)

where δ = (p − p0)/p0 is the fractional momentum offset, Aq = (q2β + (αqqβ + βqq
′
β)

2)/βq is the
betatron amplitude, and the betatron coordinates are computed using

qβ = q − δ

(

ηq +

(

∂ηq
∂δ

)

0

δ

)

(48)

and

q′β = q′ − δ

(

η′q +

(

∂η′q
∂δ

)

0

δ

)

(49)

At each turn, δ, Ax, and Ay are computed for each particle. The user-supplied values of the various
derivatives are then used to compute the tunes for each particle. Similar expansions are used
to compute the other lattice functions. This allows computing the 2x2 transfer matrices for the
betatron coordinates in the x and planes, then advancing the betatron coordinates one turn, after
which the full coordinates are recomputed by adding back the momentum-dependent closed orbit.

The pathlength is computed using the expansion

∆s = L

3
∑

n=1

αc,nδ
n +

4
∑

n=1

R5nxβ,n+

2
∑

n=1

(

∂ns

∂An
x

)

0

An
x

n!
+

2
∑

n=1

(

∂ns

∂An
y

)

0

An
y

n!
+

(

∂2s

∂Ax∂Ay

)

0

AxAy (50)

where αc,1 is the linear momentum compaction factor. Note that in keeping with convention the
higher-order momentum compaction is expressed by polynomial coefficients, not derivatives. The
terms dependent on betatron amplitude are expressed in terms of the more typical derivatives.
Note the difference between the R5n terms (added in version 2019.4) and those dependent on Ax,y:
the former are oscillatory while the latter will accumulate. The frequency_map command can be
used to compute path-length dependence on betatron amplitude.

Using this element is very similar to using the setup_linear_chromatic_tracking command.
The advantage is that using LMATRIX, one can split a ring into segments and place, for example,
impedance elements between the segments.

This element was inspired by requests from Y. Chae (APS).
N.B.: There is a bug related to using ILMATRIX that will result in a crash if one does not

request computation of the twiss parameters. If you encounter this problem, just add the following
statement after the run_setup command:

&twiss_output

matched = 1

&end

303

IONEFFECTS

10.42 IONEFFECTS—Simulates ionization of residual gas and interaction with
the beam.

Simulates ionization of residual gas and interaction with the beam.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

DISABLE long 0 If non-zero, turn off ion effects
in the region covered by this
element.

MACRO IONS long 0 If positive, overrides the
default value set in the
ion effects command, giving
the number of macro ions
generated per bunch passage.

GENERATION INTERVAL long 0 If positive, overrides the
default value set in the
ion effects command, giving
the number of macro ions
generated per bunch passage.

X SPAN double 0.0 If positive, gives the region
over which ions are kept.

Y SPAN double 0.0 If positive, gives the region
over which ions are kept.

X BIN DIVISOR double 0.0 If positive, gives the ratio of
electron beam sigma to bin
size for ion field calculation.

Y BIN DIVISOR double 0.0 If positive, gives the ratio of
electron beam sigma to bin
size for ion field calculation.

X RANGE MULTIPLIER double 0.0 If positive, gives the ratio of
ion binning region size to ion
80% x range.

Y RANGE MULTIPLIER double 0.0 If positive, gives the ratio of
ion binning region size to ion
80% y range.

X SIGMA LIMIT MULTIPLIER double 0.0 If positive, gives lower limit on
bi-gaussian fit sigma values in
units of the ion bin size.

Y SIGMA LIMIT MULTIPLIER double 0.0 If positive, gives lower limit on
bi-gaussian fit sigma values in
units of the ion bin size.

304

IONEFFECTS continued

Simulates ionization of residual gas and interaction with the beam.
Parameter Name Units Type Default Description

STARTPASS long 0 If positive, gives the pass on
which ion effects start.

ENDPASS long -1 If positive, gives the pass on
which ion effects end.

PASSINTERVAL long 1 Interval between ion effects
modeling.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

NB: This element is new and considered experimental. Please report issues back to the devel-
opers.

This element provides serial or parallel simulation of the interaction of residual gas ions with
the electron beam. It must be used in concert with the ion_effects command, described in 7.30.

Modeling of residual ions has these features:

• s-dependent gas pressure profiles for any number of species.

• Arbitrary ion species, specified by a user-provided file that includes the cross sections.

• User-defined locations for ion generation. Each IONEFFECTS element represents the ions
present in a segment of the accelerator. The segments start and end half way between
successive IONEFFECTS elements.

• Arbitrary fill patterns. Uniform fills can be set up using the bunched_beam command, while
custom fills can be set up by generating the beam externally and using the sdds_beam com-
mand.

• Multiple ionization of trapped ions. For example, a CO+ ion could multiply ionize into
CO++, or dissociate into C+.

Some limitations of the model include:

• Fields from electron bunches are computed based on gaussian parameters, which is a reason-
ably good approximation.

• By default, fields from ions are computed based on gaussian parameters, which is often a
somewhat poor approximation. Alternatively, a bi-gaussian form may be used, which uses a
sum of two gaussians. This is a much better approximation to the typical distribution, which
often has a hot core and long tails.

• Ions move only transversely and exist only outside of magnets.

305

Performing ion simulations involves the following steps

1. Prepare file describing the ion properties, as described in 7.30. Each ion is generated by either
a source gas or source ion.

2. Prepare file giving gas pressure vs s for the source gases described in the ion properties file.

3. Insert IONEFFECTS elements in the lattice. This can be performed using the insert_elements
command (described in 7.28), or manually by editing the lattice file.

4. Insert ion_effects command after the run_setup command. See 7.30 for syntax. Note that
certain properties of the individual IONEFFECTS elements can override the global settings
given by in the ion_effects command.

5. Generate a bunched beam, using either the bunched_beam command or providing an externally-
generated beam to the sdds_beam command. Section 6 gives more information about bunched
beams in elegant.

For each bunch passage, the IONEFFECTS element does the following:

1. Advance existing ions during bunch gap

2. Eliminate ions that are outside of given boundaries

3. Generate ions

4. Apply kick from beam to ions

5. Apply kick from ions to beam

The line density of ions generated by a single bunch in a single pass is:

λion = σion
P

kBT
Nb (51)

where σion is the ionization cross section, P is the pressure, kB is the Boltzmann constant, T is the
temperature, and Nb is the bunch population.

The resulting macroparticle charge is:

Qmacro =
10−22e

7.5 × 10−3kB

σionPNbLeff

nmacroT
(52)

Here σion has units of Mb, P has units of Torr, kB = 1.38 × 10−23 J/K, e is the electron charge,
Leff is the effective length of the ion element (in m), and nmacro is the number of macroparticles
generated. The initial ion distribution follows the bunch distribution (assumed to be Gaussian).

The IONEFFECTS element also supports multiple ionization. In the ion_properties file, one
can define the SourceName for a given IonName to be another ion. In this case, each macro-ion
of type SourceName has a chance of being multiply ionized into type IonName. The calculation is
done every multiple_ionization_interval bunch passes. The probability of multiple ionization
depends on the cross section and local beam density.

The kick on the ions from the beam is calculated using the Basetti-Erskine formula [52], which
assumes the beam is Gaussian in both transverse dimensions. This may be a poor assumption for
the ions, in which case the field_calculation_method parameter can be set to bigaussian, which

306

uses a sum of two gaussians. This provides a much better model for the actual distribution, at the
expense of a considerable increase in run time. The ion_bin_divisor and ion_range_multiplier

parameters can be used to control the bin size and range, respectively, of the histogram used to
approximate the ion charge distribution. The ion_bin_divisor gives the ratio of the rms size of
the electron bunch in the plane in question to the bin size.

The ion_range_multiplier parameter is used to determine the range of the histogram. If
positive, a rough histogram of the ion distribution (with ten times the desired bin size) is used
to estimate the range required to encompass 80% of the ions; half this value is multiplied by the
absolute value of ion_range_multiplier to get the half range of the full histogram; a value of
1.5 is is suggested. If zero, the histogram encompasses all of the ions, which may result in a
sparse histogram when a few ions have large coordinates. If negative gives the range of the binned
coordinates in units of the rms size of the ion distribution.

The ion_histogram_output parameter and related parameters can be used to request output of
the ion distribution and the bi-gaussian fit, which is advisable when setting the binning parameters.

The change in momentum of an ion due to the bunch passage is:

∆py + i∆px =
cNbreme

γ

√

2π

σ2
x − σ2

y

w

x+ iy
√

2(σ2
x − σ2

y)

− exp

(−x2

2σ2
x

− y2

2σ2
y

)

w

σy

σx
x+ iσx

σy
y

√

2(σ2
x − σ2

y)

(53)
where c is the speed of light, Nb is the bunch population, re is the classical electron radius (2.82×
10−15 m), me is the electron mass, γ is the relativistic factor (∼ 1 for the ions), σx,y are the
horizontal and vertical beam sizes, w is the complex error function, and x and y are the distance
from the ion to the bunch center.

307

KICKER

10.43 KICKER—A combined horizontal-vertical steering magnet implemented
as a matrix, up to 2nd order. For time-dependent kickers, see BUMPER.

A combined horizontal-vertical steering magnet implemented as a matrix, up to 2nd order. For
time-dependent kickers, see BUMPER.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

HKICK RAD double 0.0 x kick angle

VKICK RAD double 0.0 y kick angle

TILT RAD double 0.0 rotation about longitudinal
axis

B2 1/M2 double 0.0 normalized sextupole
strength (e.g., kick =
KICK*(1+B2*x2̂))

HCALIBRATION double 1 factor applied to obtain x kick

VCALIBRATION double 1 factor applied to obtain y kick

EDGE EFFECTS long 0 include edge effects?

ORDER long 0 matrix order

STEERING long 1 use for steering?

SYNCH RAD long 0 include classical, single-
particle synchrotron radia-
tion?

ISR long 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

LERAD double 0.0 if L=0, use this length for ra-
diation computations

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

308

KOCT

10.44 KOCT—A canonical kick octupole.

A canonical kick octupole.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

K3 1/M4 double 0.0 geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

BORE M double 0.0 bore radius

B T double 0.0 field at pole tip (used if bore
nonzero)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

N KICKS long 4 number of kicks (rounded up
to next multipole of 4 if IN-
TEGRATION ORDER=4)

SYSTEMATIC MULTIPOLES STRING NULL input file for systematic multi-
poles

RANDOM MULTIPOLES STRING NULL input file for random multi-
poles

INTEGRATION ORDER short 4 integration order (2 or 4)

SQRT ORDER short 0 Ignored, kept for backward
compatibility only.

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

ISR1PART short 1 Include ISR for single-particle
beam only if ISR=1 and
ISR1PART=1

EXPAND HAMILTONIAN short 0 If 1, Hamiltonian is expanded
to leading order.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

309

KPOLY

10.45 KPOLY—A thin kick element with polynomial dependence on the coor-
dinates in one plane.

A thin kick element with polynomial dependence on the coordinates in one plane.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

COEFFICIENT M−ORDER double 0.0 coefficient of polynomial

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FACTOR double 1 additional factor to apply

ORDER long 0 order of polynomial

PLANE STRING x plane to kick (x, y)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

310

KQUAD

10.46 KQUAD—A canonical kick quadrupole.

A canonical kick quadrupole.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

K1 1/M2 double 0.0 geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

BORE M double 0.0 bore radius

B T double 0.0 pole tip field (used if bore
nonzero)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

N KICKS long 4 number of kicks (rounded up
to next multipole of 4 if IN-
TEGRATION ORDER=4)

HKICK RAD double 0.0 horizontal correction kick

VKICK RAD double 0.0 vertical correction kick

HCALIBRATION double 1 calibration factor for horizon-
tal correction kick

VCALIBRATION double 1 calibration factor for vertical
correction kick

HSTEERING short 0 use for horizontal correction?

VSTEERING short 0 use for vertical correction?

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

SYSTEMATIC MULTIPOLES STRING NULL input file for systematic multi-
poles

EDGE MULTIPOLES STRING NULL input file for systematic edge
multipoles

RANDOM MULTIPOLES STRING NULL input file for random multi-
poles

STEERING MULTIPOLES STRING NULL input file for multipole content
of steering kicks

SYSTEMATIC MULTIPOLE FACTOR double 1 Factor by which to multiply
systematic and edge multi-
poles

311

KQUAD continued

A canonical kick quadrupole.
Parameter Name Units Type Default Description

RANDOM MULTIPOLE FACTOR double 1 Factor by which to multiply
random multipoles

STEERING MULTIPOLE FACTOR double 1 Factor by which to multiply
steering multipoles

INTEGRATION ORDER short 4 integration order (2 or 4)

SQRT ORDER short 0 Ignored, kept for backward
compatibility only.

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

ISR1PART short 1 Include ISR for single-particle
beam only if ISR=1 and
ISR1PART=1

EDGE1 EFFECTS short 0 include entrance edge effects?

EDGE2 EFFECTS short 0 include exit edge effects?

LEFFECTIVE M double 0.0 Effective length. Ignored if
non-positive.

I0P M double 0.0 i0+ fringe integral

I1P M2 double 0.0 i1+ fringe integral

I2P M3 double 0.0 i2+ fringe integral

I3P M4 double 0.0 i3+ fringe integral

LAMBDA2P M3 double 0.0 lambda2+ fringe integral

I0M M double 0.0 i0- fringe integral

I1M M2 double 0.0 i1- fringe integral

I2M M3 double 0.0 i2- fringe integral

I3M M4 double 0.0 i3- fringe integral

LAMBDA2M M3 double 0.0 lambda2- fringe integral

EDGE1 LINEAR short 1 Use to selectively turn off lin-
ear part if EDGE1 EFFECTS
nonzero.

EDGE2 LINEAR short 1 Use to selectively turn off lin-
ear part if EDGE2 EFFECTS
nonzero.

EDGE1 NONLINEAR FACTOR double 1 Use to selectively scale non-
linear entrance edge effects if
EDGE1 EFFECTS>1

312

KQUAD continued

A canonical kick quadrupole.
Parameter Name Units Type Default Description

EDGE2 NONLINEAR FACTOR double 1 Use to selectively scale non-
linear exit edge effects if
EDGE2 EFFECTS>1

RADIAL short 0 If non-zero, converts the
quadrupole into a radially-
focusing lens

EXPAND HAMILTONIAN short 0 If 1, Hamiltonian is expanded
to leading order.

TRACKING MATRIX short 0 If nonzero, gives order of
tracking-based matrix up to
third order to be used for
twiss parameters etc. If zero,
2nd-order analytical matrix is
used.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a quadrupole using a kick method based on symplectic integration.
The user specifies the number of kicks and the order of the integration. For computation of twiss
parameters and response matrices, this element is treated like a standard thick-lens quadrupole;
i.e., the number of kicks and the integration order become irrelevant.
Specification of systematic and randommultipole errors is supported through the SYSTEMATIC_MULTIPOLES,
EDGE_MULTIPOLES, and RANDOM_MULTIPOLES fields. These specify, respectively, fixed multipole
strengths for the body of the element, fixed multipole strengths for the edges of the element, and
random multipole strengths for the body of the element. These fields give the names of SDDS files
that supply the multipole data. The files are expected to contain a single page of data with the
following elements:

1. Floating point parameter referenceRadius giving the reference radius for the multipole data.

2. An integer column named order giving the order of the multipole. The order is defined as
(Npoles − 2)/2, so a quadrupole has order 1, a sextupole has order 2, and so on.

3. Floating point columns normal and skew giving the values for the normal and skew multipole
strengths, respectively. (N.B.: previous versions used the names an and bn, respectively. This
is still accepted but deprecated) These are defined as a fraction of the main field strength

measured at the reference radius, R: fn = KnRn/n!
KmRm/m! , wherem = 1 is the order of the main field

and n is the order of the error multipole. A similar relationship holds for the skew multipole
fractional strengths. For random multipoles, the values are interpreted as rms values for the
distribution.

313

Specification of systematic higher multipoles due to steering fields is supported through the
STEERING_MULTIPOLES field. This field gives the name of an SDDS file that supplies the multipole
data. The file is expected to contain a single page of data with the following elements:

1. Floating point parameter referenceRadius giving the reference radius for the multipole data.

2. An integer column named order giving the order of the multipole. The order is defined as
(Npoles − 2)/2. The order must be an even number because of the quadrupole symmetry.

3. Floating point column normal giving the values for the normal multipole strengths, which are
driven by the horizontal steering field. (N.B.: previous versions used the name an for this data.
This is still accepted but deprecated) normal is specifies the multipole strength as a fraction fn
of the steering field strength measured at the reference radius, R: fn = KnRn/n!

KmRm/m! , wherem = 0
is the order of the steering field and n is the order of the error multipole. The skew values
(for vertical steering) are deduced from the normal values, specifically, gn = fn ∗ (−1)n/2.

The dominant systematic multipole term in the steering field is a sextupole. Note that elegant
presently does not include such sextupole contributions in the computation of the chromaticity via
the twiss output command. However, these chromatic effects will be seen in tracking.

Apertures specified via an upstream MAXAMP element or an aperture_input command will be
imposed inside this element.

As of version 29.2, this element incorporates the ability to have different values for the insertion
and effective lengths. This is invoked when LEFFECTIVE is positive. In this case, the L parameter is
understood to be the physical insertion length. Using LEFFECTIVE is a convenient way to incorporate
the fact that the effective length may differ from the physical length and even vary with excitation,
without having to modify the drift spaces on either side of the quadrupole element.

Fringe field effects are based on publications of D. Zhuo et al. [34] and J. Irwin et al. [35], as well
as unpublished work of C. X. Wang (ANL). The fringe field is characterized by 10 integrals given
in equations 19, 20, and 21 of [34]. However, the values input into elegant should be normalized
by K1 or K2

1 , as appropriate.
For the exit-side fringe field, let s1 be the center of the magnet, s0 be the location of the

nominal end of the magnet (for a hard-edge model), and let s2 be a point well outside the magnet.
Using K1,he(s) to represent the hard edge model and K1(s) the actual field profile, we define the
normalized difference as k̃(s) = (K1(s) − K1,he(s))/K1(s1). (Thus, k̃(s) = K̃(s)/K0, using the
notation of Zhou et al.)

The integrals to be input to elegant are defined as

i−0 =

∫ s0

s1

k̃(s)ds i+0 =

∫ s2

s0

k̃(s)ds (54)

i−1 =

∫ s0

s1

k̃(s)(s − s0)ds i+1 =

∫ s2

s0

k̃(s)(s − s0)ds (55)

i−2 =

∫ s0

s1

k̃(s)(s− s0)
2ds i+2 =

∫ s2

s0

k̃(s)(s − s0)
2ds (56)

i−3 =

∫ s0

s1

k̃(s)(s− s0)
3ds i+3 =

∫ s2

s0

k̃(s)(s − s0)
3ds (57)

λ−
2 =

∫ s0

s1

ds

∫ s0

s
ds′k̃(s)k̃(s′)(s′ − s) λ+

2 =

∫ s2

s0

ds

∫ s2

s
ds′k̃(s)k̃(s′)(s′ − s) (58)

314

Normally, the effects are dominated by i−1 and i+1 . The script computeQuadFringeIntegrals,
packaged with elegant, allows computing these integrals and the effective length if provided with
data giving the gradient vs s.

The EDGE1_EFFECTS and EDGE2_EFFECTS parameters can be used to turn fringe field effects on
and off, but also to control the order of the implementation. If the value is 1, linear fringe effects
are included. If the value is 2, leading-order (cubic) nonlinear effects are included. If the value is
3 or higher, higher order effects are included.

315

KQUSE

10.47 KQUSE—A canonical kick element combining quadrupole and sextupole
fields.

A canonical kick element combining quadrupole and sextupole fields.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

K1 1/M2 double 0.0 geometric quadrupole strength

K2 1/M3 double 0.0 geometric sextupole strength

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE1 M double 0.0 fractional strength error for
K1

FSE2 M double 0.0 fractional strength error for
K2

N KICKS long 4 number of kicks

INTEGRATION ORDER short 4 integration order (2 or 4)

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

ISR1PART short 1 Include ISR for single-particle
beam only if ISR=1 and
ISR1PART=1

MATRIX TRACKING short 0 For testing only.

EXPAND HAMILTONIAN short 0 If 1, Hamiltonian is expanded
to leading order.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

316

KSEXT

10.48 KSEXT—A canonical kick sextupole, which differs from the MULT ele-
ment with ORDER=2 in that it can be used for chromaticity correction.

A canonical kick sextupole, which differs from the MULT element with ORDER=2 in that it can
be used for chromaticity correction.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

K2 1/M3 double 0.0 geometric strength

K1 1/M2 double 0.0 geometric quadrupole strength
error. See notes below!

J1 1/M2 double 0.0 geometric skew quadrupole
strength error. See notes be-
low!

TILT RAD double 0.0 rotation about longitudinal
axis

BORE M double 0.0 bore radius

B T double 0.0 field at pole tip (used if bore
nonzero)

N KICKS long 4 number of kicks (rounded up
to next multipole of 4 if IN-
TEGRATION ORDER=4)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

HKICK RAD double 0.0 horizontal correction kick

VKICK RAD double 0.0 vertical correction kick

HCALIBRATION double 1 calibration factor for horizon-
tal correction kick

VCALIBRATION double 1 calibration factor for vertical
correction kick

HSTEERING short 0 use for horizontal correction?

VSTEERING short 0 use for vertical correction?

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

SYSTEMATIC MULTIPOLES STRING NULL input file for systematic multi-
poles

EDGE MULTIPOLES STRING NULL input file for systematic edge
multipoles

317

KSEXT continued

A canonical kick sextupole, which differs from the MULT element with ORDER=2 in that it can
be used for chromaticity correction.
Parameter Name Units Type Default Description

RANDOM MULTIPOLES STRING NULL input file for random multi-
poles

STEERING MULTIPOLES STRING NULL input file for multipole content
of steering kicks

SYSTEMATIC MULTIPOLE FACTOR double 1 Factor by which to multiply
systematic and edge multi-
poles

RANDOM MULTIPOLE FACTOR double 1 Factor by which to multiply
random multipoles

STEERING MULTIPOLE FACTOR double 1 Factor by which to multiply
steering multipoles

INTEGRATION ORDER short 4 integration order (2 or 4)

SQRT ORDER short 0 Ignored, kept for backward
compatibility only.

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

ISR1PART short 1 Include ISR for single-particle
beam only if ISR=1 and
ISR1PART=1

EXPAND HAMILTONIAN short 0 If 1, Hamiltonian is expanded
to leading order.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a sextupole using a kick method based on symplectic integration. The
user specifies the number of kicks and the order of the integration. For computation of twiss
parameters, chromaticities, and response matrices, this element is treated like a standard thick-
lens sextuupole; i.e., the number of kicks and the integration order become irrelevant.
Specification of systematic and randommultipole errors is supported through the SYSTEMATIC_MULTIPOLES,
EDGE_MULTIPOLES, and RANDOM_MULTIPOLES fields. These specify, respectively, fixed multipole
strengths for the body of the element, fixed multipole strengths for the edges of the element, and
random multipole strengths for the body of the element. These fields give the names of SDDS files
that supply the multipole data. The files are expected to contain a single page of data with the
following elements:

1. Floating point parameter referenceRadius giving the reference radius for the multipole data.

318

2. An integer column named order giving the order of the multipole. The order is defined as
(Npoles − 2)/2, so a quadrupole has order 1, a sextupole has order 2, and so on.

3. Floating point columns normal and skew giving the values for the normal and skew multipole
strengths, respectively. (N.B.: previous versions used the names an and bn, respectively. This
is still accepted but deprecated) These are defined as a fraction of the main field strength

measured at the reference radius, R: fn = KnRn/n!
KmRm/m! , wherem = 2 is the order of the main field

and n is the order of the error multipole. A similar relationship holds for the skew multipole
fractional strengths. For random multipoles, the values are interpreted as rms values for the
distribution.

Specification of systematic higher multipoles due to steering fields is supported through the
STEERING_MULTIPOLES field. This field gives the name of an SDDS file that supplies the multipole
data. The file is expected to contain a single page of data with the following elements:

1. Floating point parameter referenceRadius giving the reference radius for the multipole data.

2. An integer column named order giving the order of the multipole. The order is defined as
(Npoles − 2)/2. The order must be an even number because of the quadrupole symmetry.

3. Floating point column normal giving the values for the normal multipole strengths, which are
driven by the horizontal steering field. (N.B.: previous versions used the name an for this data.
This is still accepted but deprecated) normal is specifies the multipole strength as a fraction fn
of the steering field strength measured at the reference radius, R: fn = KnRn/n!

KmRm/m! , wherem = 0
is the order of the steering field and n is the order of the error multipole. The skew values
(for vertical steering) are deduced from the normal values, specifically, gn = fn ∗ (−1)n/2.

Another way of introducing errors is via the K1 and J1 parameters, which allow introducing
a normal and skew quadrupole error term. For tracking, the strength of these values can be
arbitrarily high without introducing errors. However, the matrix analysis (e.g., for determination
of tunes and beta functions) assumes that these are weak effects and high accuracy should not be
expected if this is not true. If K1 is significant, then use of the KQUSE element is preferred.

Apertures specified via an upstream MAXAMP element or an aperture_input command will be
imposed inside this element.

319

LMIRROR

10.49 LMIRROR—A mirror for light optics

A mirror for light optics
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

RX M double 0.0 radius in horizontal plane

RY M double 0.0 radius in vertical plane

THETA RAD double 0.0 angle of incidence (in horizon-
tal plane)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

TILT RAD double 0.0 misalignment rotation about
longitudinal axis

YAW RAD double 0.0 misalignment rotation about
vertical axis

PITCH RAD double 0.0 misalignment rotation about
transverse horizontal axis

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

320

LRWAKE

10.50 LRWAKE—Long-range (inter-bunch and inter-turn) longitudinal and trans-
verse wake

Long-range (inter-bunch and inter-turn) longitudinal and transverse wake
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

INPUTFILE STRING NULL name of file giving Green func-
tion

TCOLUMN STRING NULL column in INPUTFILE con-
taining time data

WXCOLUMN STRING NULL column in INPUTFILE con-
taining horizontal dipole
Green function

WYCOLUMN STRING NULL column in INPUTFILE con-
taining vertical dipole Green
function

WZCOLUMN STRING NULL column in INPUTFILE con-
taining longitudinal Green
function

QXCOLUMN STRING NULL column in INPUTFILE con-
taining horizontal quadrupole
Green function

QYCOLUMN STRING NULL column in INPUTFILE con-
taining vertical quadrupole
Green function

FACTOR double 1 factor by which to multiply
wakes

XFACTOR double 1 factor by which to multiply
longitudinal wake

YFACTOR double 1 factor by which to multiply
horizontal dipole wake

ZFACTOR double 1 factor by which to multiply
vertical dipole wake

QXFACTOR double 1 factor by which to multiply
horizontal quadrupole wake

QYFACTOR double 1 factor by which to multiply
vertical quadrupole wake

TURNS TO KEEP long 128 number of turns of data to re-
tain

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the wake
to full strength.

321

LRWAKE continued

Long-range (inter-bunch and inter-turn) longitudinal and transverse wake

Parameter Name Units Type Default Description

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element provides serial and parallel modeling of long range, multi-bunch, multi-pass, non-
resonant wakes. Resonant wakes can be modeled using the *RFMODE elements, while short-range
wakes are modeled with WAKE, TRWAKE, ZLONGIT, ZTRANSVERSE, and RFCW.

For the LRWAKE element, the beam is assumed to be bunched and wakes are computed bunch-
to-bunch. The long-range wake is assumed to be constant within any single bunch.

To use this element, the beam has to be prepared in a special way so that elegant can recognize
which particles belong to which bunches. See Section 6 for details. Given a properly prepared beam,
the algorithm works as follows.

• Each processor uses arrays to record

– How many particles are in each of B bunches,

– The sum of the arrival times t at the LRWAKE element for the particles in each bunch,
and

– The sum of x and y at the LRWAKE element for the particles in each bunch.

• These arrays are summed across all the processors and used to compute the moments 〈t〉,
〈x〉, and 〈y〉 for each bunch, as well as the charge in each bunch.

• Arrays of length B from N prior turns are kept in a buffer

– Buffer for turns N − 1 to 1 is copied to slots N through 2, thus overwriting the data for
the oldest turn.

– The data for latest turn is copied into slot 1.

• For each bunch, sums are performed over all prior bunches/turns to compute the voltage. For
the longitudinal wake, we have

Vz(b) =
N∗B
∑

i=b

qiWz(〈tb〉 − 〈ti〉). (59)

A positive value decelerates the particle. For the horizontal dipole wake we have

Vx(b) =

N∗B
∑

i=b

qi〈xi〉Wx(〈tb〉 − 〈ti〉), (60)

with the vertical wake being similar. In both cases, a positive value deflects the particle
toward positive x or y for a positive offset of the driving particle.

322

• The quadrupole wakes may also be included. In this case, the contribution to the horizontal
wake is

Vx(b) =
N∗B
∑

i=b

qixpWx(〈tb〉 − 〈ti〉), (61)

where xp is the coordinate of the probe particle. The vertical wake is similar.

To use LRWAKE, the user provides the wakes (functions of t) in an SDDS file. These wakes
may extend over an arbitrary number of turns, with the user declaring how many turns to actually
use as part of the element definition. However, they should be zero within the region occupied by a
single bunch, to avoid double-counting with the true short-range wake. (Note that the above sums
include the self-wake.) Similarly, the short-range should be zero for times comparable to the bunch
spacing.

Note that the quadrupole wakes are in some cases related to the dipole wakes by constant
numerical factors [48]. In such a case, one may name the same column for QXCOLUMN (QYCOLUMN)
and WXCOLUMN (WYCOLUMN) and then specify QXFACTOR (QYFACTOR) appropriately.

323

LSCDRIFT

10.51 LSCDRIFT—Longitudinal space charge impedance

Longitudinal space charge impedance
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

LEFFECTIVE M double 0.0 effective length (used if L=0)

BINS long 0 number of bins for current his-
togram

SMOOTHING short 0 Use Savitzky-Golay filter to
smooth current histogram?

SG HALFWIDTH short 1 Savitzky-Golay filter half-
width for smoothing current
histogram

SG ORDER short 1 Savitzky-Golay filter order for
smoothing current histogram

INTERPOLATE short 1 Interpolate wake?

LSC short 1 Include longitudinal space-
charge impedance? If zero,
acts like ordinary drift.

AUTO LEFFECTIVE short 0 In nonzero and if L=0, the
LEFFECTIVE parameter is
set to the length of the previ-
ous element.

LOW FREQUENCY CUTOFF0 double -1 Highest spatial frequency at
which low-frequency cutoff fil-
ter is zero. If not positive,
no low-frequency cutoff filter is
applied. Frequency is in units
of Nyquist (0.5/binsize).

LOW FREQUENCY CUTOFF1 double -1 Lowest spatial frequency
at which low-frequency
cutoff filter is 1. If
not given, defaults to
LOW FREQUENCY CUTOFF1.

HIGH FREQUENCY CUTOFF0 double -1 Spatial frequency at which
smoothing filter begins. If
not positive, no frequency fil-
ter smoothing is done. Fre-
quency is in units of Nyquist
(0.5/binsize).

324

LSCDRIFT continued

Longitudinal space charge impedance
Parameter Name Units Type Default Description

HIGH FREQUENCY CUTOFF1 double -1 Spatial frequency at which
smoothing filter is 0. If
not given, defaults to
HIGH FREQUENCY CUTOFF0.

RADIUS FACTOR double 1.7 LSC radius is
(Sx+Sy)/2*RADIUS FACTOR

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates longitudinal space charge in a drift space using the method described
in [22]. This is based on the longitudinal space charge impedance per unit length

Zlsc(k) =
iZ0

πkr2b

[

1− krb
γ

K1

(

krb
γ

)]

(62)

If L is 0 and LEFFECTIVE is not, then the element provides a LSC kick with impedance given by
ZlscLeffective. This can be used to insert an LSC kick that integrates the longitudinal space charge
effect of a section of a lattice. This should be used only for cases where there is very little relative
longitudinal motion of particles.

Two simple filters are provided.

• The parameters HIGH_FREQUENCY_CUTOFF0 and HIGH_FREQUENCY_CUTOFF1 are used to filter
out high frequencies, i.e., they provide a low-pass or noise filter. The filter has value 1 for f <
HIGH_FREQUENCY_CUTOFF0, value 0 for f > HIGH_FREQUENCY_CUTOFF1, and linear variation
in between.

• The parameters LOW_FREQUENCY_CUTOFF0 and LOW_FREQUENCY_CUTOFF1 are used to filter
out low frequencies, i.e., they provide a high-pass filter. The filter has value 0 for f <
LOW_FREQUENCY_CUTOFF0, value 1 for f > LOW_FREQUENCY_CUTOFF1, and linear variation in
between.

]

325

LSRMDLTR

10.52 LSRMDLTR—A non-symplectic numerically integrated planar undula-
tor including optional co-propagating laser beam for laser modulation of
the electron beam.

A non-symplectic numerically integrated planar undulator including optional co-propagating laser
beam for laser modulation of the electron beam.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

BU T double 0.0 Undulator peak field

TGU GRADIENT 1/M double 0.0 Transverse gradient divided by
maximum on-axis field.

TGU COMP FACTOR NULL double 1 Use to adjust constant field
component to reduce trajec-
tory error.

PERIODS long 0 Number of undulator periods.

METHOD NULL STRING non-adaptive runge-kutta integration method (runge-
kutta, bulirsch-stoer,
modified-midpoint, two-pass
modified-midpoint, leap-frog,
non-adaptive runge-kutta)

FIELD EXPANSION NULL STRING leading terms ideal, exact, or ”leading
terms”

ACCURACY NULL double 0.0 Integration accuracy for adap-
tive integration. (Not recom-
mended)

N STEPS long 0 Number of integration steps
for non-adaptive integration.

POLE FACTOR1 double 0.1557150345504 Strength factor for the first
and last pole.

POLE FACTOR2 double 0.380687012288581 Strength factor for the second
and second-to-last pole.

POLE FACTOR3 double 0.802829337348179 Strength factor for the third
and third-to-last pole.

LASER WAVELENGTH M double 0.0 Laser wavelength. If zero, the
wavelength is calculated from
the resonance condition.

LASER PEAK POWER W double 0.0 laser peak power

LASER W0 M double 1 laser spot size at waist, w0 =√
2σx =

√
2σy

326

LSRMDLTR continued

A non-symplectic numerically integrated planar undulator including optional co-propagating laser
beam for laser modulation of the electron beam.
Parameter Name Units Type Default Description

LASER PHASE RAD double 0.0 laser phase

LASER X0 M double 0.0 laser horizontal offset at center
of wiggler

LASER Y0 M double 0.0 laser vertical offset at center of
wiggler

LASER Z0 M double 0.0 offset of waist position from
center of wiggler

LASER TILT RAD double 0.0 laser tilt

LASER M short 0 laser horizontal mode number
(<5)

LASER N short 0 laser vertical mode number
(<5)

SYNCH RAD short 0 Include classical, single-
particle synchrotron radia-
tion?

ISR short 0 Include quantum excitation?

HELICAL short 0 If non-zero, simulate helical
undulator.

TIME PROFILE NULL STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing time-dependent modula-
tion of the laser electric and
magnetic fields.

TIME OFFSET S double 0.0 Time offset of the laser profile.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a planar undulator, together with an optional co-propagating laser beam
that can be used as a beam heater or modulator. The simulation is done by numerical integration
of the Lorentz equation. It is not symplectic, and hence this element is not recommended for
long-term tracking simulation of undulators in storage rings.

The fields in the undulator can be expressed in one of three ways. The FIELD EXPANSION
parameter is used to control which method is used.

• The exact field, given by (see section 3.1.5 of the Handbook of Accelerator Physics and Engi-
neering)

Bx = 0, (63)

327

By = B0 cosh kuy cos kuz, (64)

and
Bz = −B0 sinh kuy sin kuz, (65)

where ku = 2π/λu and λu is the undulator period. This is the most precise method, but also
the slowest.

Experimental feature: One may also model a transverse gradient undulator (TGU) by set-
ting the TGU_GRADIENT parameter to a non-zero value. In this case, taking a as the normalized
gradient, the fields are [54]

Bx =
aB0 sinh kuy cos kuz

ku
, (66)

By = B0

(

(1 + ax) cosh kuy cos kuz +
aC

2k2u

eB0

γmec

)

(67)

and
Bz = −B0(1 + ax) sinh kuy sin kuz, (68)

where γ is the central relativistic factor for the beam and C is given by the TGU_COMP_FACTOR
parameter. This factor, and the term it multiplies, is present in order to help suppress the
trajectory error at the end of the device. It may require adjustment in order to achieve the
desired level of correction. In addition, the user may need to adjust the pole-strength factors
and include external misalignments and steering magnets in order to supress not only the
trajectory error, but also dispersion errors.

• The field expanded to leading order in y:

By = B0(1 +
1

2
(kuy)

2) cos kuz, (69)

and
Bz = −B0kuy sin kuz. (70)

In most cases, this gives results that are very close to the exact fields, at a savings of 10% in
computation time. This is the default mode.

• The “ideal” field:
By = B0 cos kuz, (71)

Bz = −B0kuy sin kuz. (72)

This is about 10% faster than the leading-order mode, but less precise. Also, it does not
include vertical focusing, so it is not generally recommended.

If HELICAL is set to a nonzero value, a helical device is modeled by combining the fields of two
planar devices, one of which is rotated 90 degrees and displaced one quarter wavelength. Again,
the FIELD EXPANSION parameter is used to control which method is used.

328

• The exact fields are
Bx = −B0 cosh kux sin kuz, (73)

By = B0 cosh kuy cos kuz, (74)

and
Bz = −B0 sinh kuy sin kuz −B0 sinh kux cos kuz, (75)

• The field expanded to leading order in x and y:

Bx = −B0(1 +
1

2
(kux)

2) sin kuz, (76)

By = B0(1 +
1

2
(kuy)

2) cos kuz, (77)

and
Bz = −B0kuy sin kuz −B0kux cos kuz. (78)

• The “ideal” field is
Bx = −B0 sin kuz, (79)

By = B0 cos kuz, (80)

Bz = 0 (81)

This is about 10% faster than the leading-order mode, but less precise. Also, it does not
include vertical focusing, so it is not generally recommended.

The expressions for the laser field used by this element are from A. Chao’s article “Laser Ac-
celeration — Focussed Laser,” available on-line at
http://www.slac.stanford.edu/∼achao/LaserAccelerationFocussed.pdf . The implementation cov-
ers laser modes TEMij, where 0 ≤ i ≤ 4 and 0 ≤ j ≤ 4.

By default, if the laser wavelength is not given, it is computed from the resonance condition:

λl =
λu

2γ2

(

1 +
1

2
K2

)

, (82)

where γ is the relativistic factor for the beam and K is the undulator parameter.
The adaptive integrator doesn’t work well for this element, probably due to sudden changes in

field derivatives in the first and last three poles (a result of the implementation of the undulator
terminations). Hence, the default integrator is non-adaptive Runge-Kutta. The integration accu-
racy is controlled via the N STEPS parameter. N STEPS should be about 100 times the number
of undulator periods.

The three pole factors are defined so that the trajectory is centered about x = 0 and x′ = 0
with zero dispersion. This wouldn’t be true with the standard two-pole termination, which might
cause problems overlapping the laser with the electron beam.

The laser time profile can be specified using the TIME_PROFILE parameter to specify the name
of an SDDS file containing the profile. If given, the electric and magnetic fields of the laser are
multiplied by the profile P (t). Hence, the laser intensity is multiplied by P 2(t). By default t = 0 in

329

the profile is lined up with 〈t〉 in the electron bunch. This can be changed with the TIME_OFFSET

parameter. A positive value of TIME_OFFSET moves the laser profile forward in time (toward the
head of the bunch).

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use
of data from external files to provide input waveforms. The external files are SDDS files, which
may have many columns. In order to provide a convenient way to specify both the filename and
the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value.
For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A

will be taken from file waveform.sdds. The first column is always the independent variable (e.g.,
time, position, or frequency), while the second column is the dependent quantity.

330

LTHINLENS

10.53 LTHINLENS—A thin lens for light optics

A thin lens for light optics
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

FX M double 0.0 focal length in horizontal plane

FY M double 0.0 focal length in vertical plane

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

TILT RAD double 0.0 misalignment rotation about
longitudinal axis

YAW RAD double 0.0 misalignment rotation about
vertical axis

PITCH RAD double 0.0 misalignment rotation about
transverse horizontal axis

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

331

MAGNIFY

10.54 MAGNIFY—An element that allows multiplication of phase-space coor-
dinates of all particles by constants.

An element that allows multiplication of phase-space coordinates of all particles by constants.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

MX double 1 factor for x coordinates

MXP double 1 factor for x’ coordinates

MY double 1 factor for y coordinates

MYP double 1 factor for y’ coordinates

MS double 1 factor for s coordinates

MDP double 1 factor for (p-
pCentral)/pCentral

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

332

MALIGN

10.55 MALIGN—A misalignment of the beam, implemented as a zero-order
matrix.

A misalignment of the beam, implemented as a zero-order matrix.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

DXP double 0.0 delta x’

DYP double 0.0 delta y’

DX M double 0.0 delta x

DY M double 0.0 delta y

DZ M double 0.0 delta z

DT S double 0.0 delta t

DP double 0.0 delta p/pCentral

DE double 0.0 delta gamma/gammaCentral

ON PASS long -1 pass on which to apply

FORCE MODIFY MATRIX long 0 modify the matrix even if
on pass>=0

START PID long -1 starting particleID for parti-
cles to affect. By default, all
particles are affected.

END PID long -1 ending particleID for particles
to affect. By default, all parti-
cles are affected.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

The default value of the PASS parameter (-1) means that the misalignment is imposed on the
beam every pass. This is appropriate for static misalignments. When using the MALIGN element
to kick the beam for beam dynamics studies in rings, PASS>=0 is required. If PASS=0, closed orbit
computation and correction will include the effect of the kick; however, matrix-based computations
by default will not (set FORCE_MODIFY_MATRIX=1 to change this). If PASS>0, then closed orbit
computation and correction do not include the kick, which is probably what is desired in beam
dynamics studies in rings.

333

MAPSOLENOID

10.56 MAPSOLENOID—A numerically-integrated solenoid specified as a map
of (Bz, Br) vs (z, r).

A numerically-integrated solenoid specified as a map of (Bz, Br) vs (z, r).
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

DX M double 0.0 misalignment

DY M double 0.0 misalignment

ETILT RAD double 0.0 misalignment

EYAW RAD double 0.0 misalignment

EPITCH RAD double 0.0 misalignment

N STEPS long 100 number of steps (for nonadap-
tive integration)

INPUTFILE STRING NULL SDDS file containing (Br, Bz)
vs (r, z). Each page should
have values for a fixed r.

RCOLUMN STRING NULL column containing r values

ZCOLUMN STRING NULL column containing z values

BRCOLUMN STRING NULL column containing Br values

BZCOLUMN STRING NULL column containing Bz values

FACTOR double 0.0001 factor by which to multiply
fields in file

BXUNIFORM double 0.0 uniform horizontal field to su-
perimpose on solenoid field

BYUNIFORM double 0.0 uniform vertical field to super-
impose on solenoid field

LUNIFORM double 0.0 length of uniform field super-
imposed on solenoid field

ACCURACY double 0.0001 integration accuracy

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

334

MARK

10.57 MARK—A marker, equivalent to a zero-length drift space.

A marker, equivalent to a zero-length drift space.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes
Parameter Name Units Type Default Description

DX M double 0.0 non-functional misalignment
(e.g., for girder)

DY M double 0.0 non-functional misalignment
(e.g., for girder)

FITPOINT short 0 Supply local values of Twiss
parameters, moments, floor
coordinates, matrices, etc. for
optimization?

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

If FITPOINT=0, this element results only in generation of additional output rows in the various
files that contain output vs s. For example, Twiss parameters, closed orbits, and matrices vs s will
all contain a row for each occurrence of each marker element.

If FITPOINT=1, the element has additional functionality in the context of optimizations. In
particular, for occurrence N of the defined element Element, a series of symbols are created of the
form Element#N.quantity, where quantity has the following values:

• The quantity pCentral will be available, giving the reference value of βγ at the marker
location.

• The quantities Cx, Cxp, Cy, Cyp, Cs, and Cdelta will be available, giving coordinate centroid
values from tracking to the marker location.

• The quantities Sx, Sxp, Sy, Syp, Ss, and Sdelta will be available, giving coordinate rms
values

√

〈(xi − 〈xi〉)2〉 at the marker location from tracking.

• The quantity Particleswill be available, giving the number of particles tracked to the marker
location.

• The quantities sij will be available, giving 〈(xi−〈xi〉)(xj−〈xj〉)〉 from tracking at the marker
location, where 1 ≤ i ≤ 6 and i < j ≤ 6.

• The quantities betaxBeam, alphaxBeam, betayBeam, and alphayBeam, which are the twiss
parameters computed from the beam moments obtained by tracking, will be available.

335

• The quantities Rij will be available, for 1 ≤ i ≤ 6 and 1 ≤ j ≤ 6, giving the accumulated
first-order transport matrix to the marker location.

• If the default matrix order (as set in run setup) is 2 or greater, the quantities Tijk will be
available, for 1 ≤ i ≤ 6, 1 ≤ j ≤ 6, and 1 ≤ k ≤ j, giving the accumulated second-order
transport matrix to the marker location.

• If Twiss parameter calculations are being performed (via twiss outputwith output at each step=1),
then the quantities alphax, betax, nux, psix, etax, etapx, and etaxp, along with similarly-
named quantities for the vertical plane, will be available, giving twiss parameter values at
the marker location. Note that etapx and etaxp are the same, being alternate names for η′x.
If radiation integrals are requested, the values of the radiation integrals are available in the
quantities I1, I2, etc.

• If coupled Twiss parameter calculations are being performed (via coupled twiss output

with output at each step=1), then the quantities betax1, betax2, betay1, betay2, cetax,
cetay, and tilt will be available. (These are the two beta functions for x and y, the coupled
dispersion values for x and y, and the beam tilt).

• If moments calculations are being performed (via moments outputwith output at each step=1),
then the quantities sijm, 1 ≤ i ≤ j ≤ 6, giving the 21 unique elements of the sigma matrix.
The quantities cim, 1 ≤ i ≤ 6, are also created, giving the 6 centroids from the moments com-
putation. In addition, the emittances of the three modes are available using eim, 1 ≤ i ≤ 3.
The m on the end of the symbols is to distinguish them from the moments computed from
tracking.

• If floor coordinate calculations are begin performed (via floor coordinates), then the quan-
tities X, Y, Z, theta, phi, psi, and s will be available. These are, respectively, the three
position coordinates, the three angle coordinates, and the total arc length at the marker
location.

The misalignment controls for this element are non-functional, in the sense that they do not
affect the beam. However, when combined with external scripts and the GROUP parameter, one can
use this feature to implement girder misalignments using pairs of markers to indicate the ends of
the girders. A future version of elegant will implement this internally.

336

MATR

10.58 MATR—Explicit matrix input from a text file, in the format written by
the print matrix command.

Explicit matrix input from a text file, in the format written by the print matrix command.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

FRACTION NULL double 1 The provided matrix M is in-
terpolated with the identity
matrix I according to f*M+(1-
f)*I.

FILENAME STRING input file

ORDER short 1 matrix order

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

The input file for this element uses a simple text format. It is nearly identical to the output in
the printout file generated by the matrix output and analyze map commands. For example, for
a 1st-order matrix, the file would have the following appearance:
C: C1 C2 C3 C4 C5 C6
R1: R11 R12 R13 R14 R15 R16
R2: R21 R22 R23 R24 R25 R26
R3: R31 R32 R33 R34 R35 R36
R4: R41 R42 R43 R44 R45 R46
R5: R51 R52 R53 R54 R55 R56
R6: R61 R62 R63 R64 R65 R66

Items in normal type must be entered exactly as shown, whereas those in italics must be provided
by the user. The colons are important! For this particular example, one would set ORDER=1 in the
MATR definition. Typically, the Ci are zero, except for C5, which is usually equal to the length of
the element (which must be specified with the L parameter in the MATR definition).

As of release 2019.2, the required format changed slightly. In the new version, the start of the
matrix is determined by reading through the file until a line starting with C: is found. In the past,
instead of starting with C:, the first line of the matrix could start with any string terminated by a
colon, but that line had to be the first line in the file, which conflicted with the format emitted by
analyze_map.

The FRACTION parameter can be used to interpolate the matrix elements between the matrix

337

M0 read from FILENAME and the identity matrix I, according to

M = fM0 + (1− f)I. (83)

This can be used, for example, to gradually ramp in the effect as part of an optimization. N.B.: in
general, the matrix does not have unit determinant unless f = 0 or f = 1, so this feature should
be used only as a knob to assist finding a solution with f = 1. Exceptions are when M0 is a drift
space or thin-lens quadrupole matrix, in which cases the determinant of M is always 1.

338

MATTER

10.59 MATTER—A Coulomb-scattering and energy-absorbing element simu-
lating material in the beam path.

A Coulomb-scattering and energy-absorbing element simulating material in the beam path.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

LEFFECTIVE M double 0.0 effective length (used if L=0)

XO M double 0.0 radiation length

ENERGY DECAY long 0 If nonzero, then particles will
lose energy due to material
using a simple exponential
model.

ENERGY STRAGGLE long 0 Use simple-minded energy
straggling model coupled with
ENERGY DECAY=1?

NUCLEAR BREMSSTRAHLUNG long 0 Model energy loss to nuclear
bremsstrahlung? If enabled,
set ENERGY DECAY=0 to
disable simpler model.

ELECTRON RECOIL long 0 If non-zero, electron recoil
during Coulomb scattering is
included (results in energy
change).

Z long 0 Atomic number

A AMU double 0.0 Atomic mass

RHO KG/M3 double 0.0 Density

PLIMIT double 0.05 Probability cutoff for each
slice

WIDTH M double 0.0 Full width of slots. If 0, no
slots are present.

SPACING M double 0.0 Center-to-center spacing of
slots. If 0, no slots are present.

TILT RAD double 0.0 Tilt of slot array about the
longitudinal axis.

CENTER M double 0.0 Position of center of slot array
in rotated frame.

N SLOTS long 0 Number of empty slots in ma-
terial. If <=0, an infinite ar-
ray is assumed.

339

MATTER continued

A Coulomb-scattering and energy-absorbing element simulating material in the beam path.
Parameter Name Units Type Default Description

START PASS long -1 If non-negative, pass on which
to start interaction with beam.

END PASS long -1 If non-negative, pass on which
to end interaction with beam.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is based on section 3.3.1 of the Handbook of Accelerator Physics and Engineer-
ing, specifically, the subsections Single Coulomb scattering of spin-12 particles, Multiple
Coulomb scattering through small angles, and Radiation length. There are two aspects to
this element: scattering and energy loss.

Scattering. The multiple Coulomb scattering formula is used whenever the thickness of the
material is greater than 0.001Xo, where Xo is the radiation length. (Note that this is inaccurate for
materials thicker than 100Xo.) For this regime, the user need only specify the material thickness
(L) and the radiation length (XO).

For materials thinner than 0.001Xo, the user must specify additional parameters, namely, the
atomic number (Z), atomic mass (A), and mass density (RHO) of the material. Note that the
density is given in units of kg/m3. (Multiply by 103 to convert g/cm3 to kg/m3.) In addition, the
simulation parameter PLIMIT may be modified.

To understand this parameter, one must understand how elegant simulates the thin materials.

First, it computes the expected number of scattering events per particle, E = σTnL = K1π3nL
K2

2
+K2∗π2

,

where n is the number density of the material, L is the thickness of the material, K1 = (2Zre
β2γ)2, and

K2 = α2Z
2
3

(βγ)2
, with re the classical electron radius and α the fine structure constant. The material

is then broken into N slices, where N = E/Plimit. For each slice, each simulation particle has a
probability E/N of scattering. If scattering occurs, the location within the slice is computed using
a uniform distribution over the slice thickness.

For each scatter that occurs, the scattering angle, θ is computed using the cumulative probability

distribution F (θ > θo) =
K2(π2−θ2o)
π2(K2+θ2o)

. This can be solved for θo, giving θo =
√

(1−F)K2π2

K2+Fπ2 . For each

scatter, F is chosen from a uniform random distribution on [0, 1].
Energy loss. There are two ways to compute energy loss in materials, using a simple minded

approach and using the bremsstrahlung cross section. The latter is recommended, but the former
is kept for backward compatibility.

• To enable bremsstrahlung simulation, simply set NUCLEAR_BREMSSTRAHLUNG=1. Note that
the energy loss is not correlated with the scattering angle, which is not entirely physical but
should be reasonable for large numbers of scattering events.

• To use the simplified approach:

340

– Set ENERGY_DECAY=1. Energy loss simulation is very simple. The energy loss per unit
distance traveled, x, is dE

dx = −E/Xo. Hence, in traveling through a material of thickness

L, the energy of each particle is transformed from E to Ee−L/Xo .

– Optionally, set ENERGY_STRAGGLE=1. Not recomemnded. Exists only for backward
compatibility. This adds variation in the energy lost by particles. The model is very,
very crude and not recommended. It assumes that the standard deviation of the
energy loss is equal to half the mean energy loss. This is an overestimate, we think, and
is provided to give an upper bound on the effects of energy straggling until a real model
can be developed. Note one obvious problem with this: if you split a MATTER element
of length L into two pieces of length L/2, the total energy loss will not not change, but
the induced energy spread will be about 30% lower, due to addition in quadrature.

Slotted absorber. If the WIDTH and SPACING parameters are set to non-zero values, then a
slotted absorber is simulated. The number of slots is by default infinite, but can be limited by
setting N_SLOTS to a positive value; in this case, the slot array is centered about the transverse
coordinate given by the CENTER parameter.

Note that the simulation contains a simplification in that particles cannot leave or enter the
material through the side of the slot. I.e., if a particle is inside (outside) the material when it hits
the front face of the object, it is assumed to remain inside (outside) until it has passed the object.
For long objects, breaking the simulation up into multiple MATTER elements is suggested if a
slotted arrangement is being simulated.

One-sided scrapers. One sided scrapers may be modeled using the SCRAPER element. It uses
the same material-modeling algorithm as described here.

341

MAXAMP

10.60 MAXAMP—A collimating element that sets the maximum transmitted
particle amplitudes for all following elements, until the next MAXAMP.

A collimating element that sets the maximum transmitted particle amplitudes for all following
elements, until the next MAXAMP.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

ELLIPTICAL long 0 is aperture elliptical?

EXPONENT long 2 exponent for boundary equa-
tion in elliptical mode. 2 is a
true ellipse.

YEXPONENT long 0 y exponent for boundary equa-
tion in elliptical mode. If zero,
defaults to EXPONENT.

OPEN SIDE STRING NULL which side, if any, is open (+x,
-x, +y, -y)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element sets the aperture for itself and all subsequent elements. The settings are in force
until another MAXAMP element is seen. Settings are also enforced inside of KQUAD, KSEXT, KOCT,
KQUSE, CSBEND, and CSRCSBEND elements.

This can introduce unexpected behavior when beamlines are reflected. For example, consider
the beamline

...

L1: LINE=(...)

L2: LINE=(...)

MA1: MAXAMP,X_MAX=0.01,Y_MAX=0.005

MA2: MAXAMP,X_MAX=0.01,Y_MAX=0.002

BL1: LINE=(MA1,L1,MA2,L2)

BL: LINE=(BL1,-BL1)

This is equivalent to

BL: LINE=(MA1,L1,MA2,L2,-L2,MA2,-L1,MA1)

342

Note that the aperture MA1 is the aperture for all of the first instance of beamline L1, but that MA2
is the aperture for the second instance, -L1. This is probably not what was intended. To prevent
this, it is recommended to always use MAXAMP elements in pairs:

BL1: LINE=(MA2,MA1,L1,MA1,MA2,L2)

BL: LINE=(BL1,-BL1)

which is equivalent to

BL: LINE=(MA2,MA1,L1,MA1,MA2,L2,-L2,MA2,MA1,-L1,MA1,MA2)

Now, both instances of L1 have the aperture defined by MA1 and both instances of L2 have the
aperture defined by MA2.

343

MBUMPER

10.61 MBUMPER—A time-dependent multipole kicker magnet. The wave-
form is in SDDS format, with time in seconds and amplitude normalized
to 1.

A time-dependent multipole kicker magnet. The waveform is in SDDS format, with time in seconds
and amplitude normalized to 1.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

STRENGTH double 0.0 geometric strength in
1/môrder

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

TIME OFFSET S double 0.0 time offset of waveform

ORDER long 0 multipole order, where 1 is
quadrupole, 2 is sextupole,
etc.

PERIODIC long 0 is waveform periodic?

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

FIRE ON PASS long 0 pass number to fire on

N KICKS long 0 Number of kicks to use for sim-
ulation.

WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing kick factor vs time

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a time-dependent multipole kicker magnet. To use this element, you
must supply an SDDS file giving the time-dependent waveform. The element is called MBUMPER to
because HKICK, VKICK, KICKER are used for steering magnets.

The arrival time of the beam is taken to define the reference time, t = 0. Hence, if the waveform
file has the maximum amplitude at t = 0, the beam will get kicked at the peak of the waveform.

344

If the waveform peaks at t = tpeak, then setting TIME_OFFSET equal to −tpeak will ensure that the
beam is kicked at the peak amplitude.

By default, the kicker fires on the first beam passage. However, if FIRE_ON_PASS is used, then
the kicker is treated like a drift space until the specified pass.

If PHASE_REFERENCE is non-zero, then the initial timing is taken from the first time-dependent
element that has the same PHASE_REFERENCE value. This would allow, for example, simulating
several kickers firing at the same time. Delays relative to this reference time can then be given with
positive adjustments to TIME_OFFSET.

The input file need not have equispaced points in time. However, the time values should increase
monotonically.

This element simulates a quadrupole or higher order kicker only. For dipole kickers, see the
BUMPER element.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use
of data from external files to provide input waveforms. The external files are SDDS files, which
may have many columns. In order to provide a convenient way to specify both the filename and
the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value.
For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A

will be taken from file waveform.sdds. The first column is always the independent variable (e.g.,
time, position, or frequency), while the second column is the dependent quantity.

345

MHISTOGRAM

10.62 MHISTOGRAM—Request for multiple dimensions (1, 2, 4 or 6) his-
togram output of particle coordinates.

Request for multiple dimensions (1, 2, 4 or 6) histogram output of particle coordinates.
Parallel capable? : no
GPU capable? : no
Back-tracking capable? : no

346

Parameter Name Units Type Default Description

FILE1D STRING NULL filename for 1d histogram out-
put, possibly incomplete (see
below)

FILE2DH STRING NULL filename for 2d x-x’ histogram
output, possibly incomplete
(see below)

FILE2DV STRING NULL filename for 2d y-y’ histogram
output, possibly incomplete
(see below)

FILE2DL STRING NULL filename for 2d dt-deltaP his-
togram output, possibly in-
complete (see below)

FILE4D STRING NULL filename for 4d x-x’-y-y’ his-
togram output, possibly in-
complete (see below)

FILE6D STRING NULL filename for 6d x-x’-y-y’-dt-
deltaP histogram output, pos-
sibly incomplete (see below)

INPUT BINS STRING NULL Name of SDDS file contains in-
put bin number.

INTERVAL long 1 interval in passes between out-
put.

START PASS long 0 starting pass for output

NORMALIZE short 1 normalize histogram with
number of particles?

DISABLE short 0 If nonzero, no output will be
generated.

LUMPED short 0 If nonzero, then results at ele-
ments with same name will be
output to a single multipage
SDDS file.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is used to generate multiple dimension (1, 2, 4, or 6) histogram output of particle
coordinates.

The calculation is set up through output filename: FILE1D, FILE2DH, FILE2DV, FILE2DL, FILE4D,
FILE6D. They may be an incomplete filename (see HISTOGRAM for detail). If LUMPED set to non zero,
then results are directed to a multi page SDDS file with each page contains data of same elements
MHISTOGRAM but at difference occurrence instead of multiple SDDS files. In this case the “%ld” in
filename is ignored.

347

The bin number used to do histogram analysis is given through a SDDS file from INPUT_BINS.
It contains 4 columns: Bins_1D, Bins_2D, Bins_4D, Bins_6D; and 6 rows (x, x’, y, y’, dt, delta).
A non-zero value in Bins_1D is a switch for doing histogram analysis in corresponding dimension,
and the maximum value in Bins_1D is used as bin number to do the analysis.

The normalization is different from HISTOGRAM as we alwayse treat bin-size = 1.

The output file uses the general format designed for a n-dimensional histogram data. It must
contains a column named “Frequency” (Type: “double”), and following parameters:

• ND — Type: long; Value: “n”.

• Variable??Name— Type: “string”. “??” counts from “0” to “ND-1” in double digits format,
same for all following parameters.

• Variable??Min — Type: “double”. Minimum value of “??” variable.

• Variable??Max — Type: “double”. Maximum value of “??” variable.

• Variable??Interval — Type: “double”. Bin size of “??” variable.

• Variable??Dimension — Type: “long”. Total number of bins of “??” variable. Vari-
able??Dimension = (Variable??Max - Variable??Min)/Variable??Interval+1.

The data is arranged as it has a “ND” index counter [iND−1|...|i1], where iND−1 takes value from
“0” to “Variable[%02d ND-1]Dimension”.

348

MODRF

10.63 MODRF—A first-order matrix RF cavity with exact phase dependence,
plus optional amplitude and phase modulation.

A first-order matrix RF cavity with exact phase dependence, plus optional amplitude and phase
modulation.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

VOLT V double 0.0 nominal voltage

PHASE DEG double 0.0 nominal phase

FREQ Hz double 500000000 nominal frequency

Q double 0.0 cavity Q

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

AMMAG double 0.0 magnitude of amplitude mod-
ulation (fraction value)

AMPHASE DEG double 0.0 phase of amplitude modula-
tion

AMFREQ Hz double 0.0 frequency of amplitude modu-
lation

AMDECAY 1/s double 0.0 exponential decay rate of am-
plitude modulation

PMMAG DEG double 0.0 magnitude of phase modula-
tion

PMPHASE DEG double 0.0 phase of phase modulation

PMFREQ Hz double 0.0 frequency of phase modulation

PMDECAY 1/s double 0.0 exponential decay rate of
phase modulation

FIDUCIAL STRING NULL mode for determining fidu-
cial arrival time (light, tmean,
first, pmaximum)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is very similar to the RFCA element, except that the amplitude and phase of the
cavity can be modulated.

The phase convention is as follows, assuming a positive rf voltage: PHASE=90 is the crest for

349

acceleration. PHASE=180 is the stable phase for a storage ring above transition without energy
losses.

The element works by first computing the fidicial arrival time t̄. Using this, the effective voltage
is computed using the amplitude modulation parameters, according to

Ve = V0(1 +Aam sin(ωamt̄+ φam) exp(−αamt̄)) (84)

where V0 is the nominal cavity voltage VOLT, Aam is AMMAG, ωam is the angular frequency corre-
sponding to AMFREQ, φam is the amplitude modulation phase corresponding to AMPHASE (converted
from degrees to radians), and αam is AMDECAY.

The phase of the phase modulation is computed using

φpm = ωpmt̄+∆φpm, (85)

where ωpm is the angular frequency corresponding to PMFREQ and ∆φpm is the phase offset corre-
sponding to PMPHASE (converted from degrees to radians). The rf phase for the centroid is then
computed using

φ = ω0t̄+ φ0 +Φm sin(φpm) exp(−αpmt̄), (86)

where ω0 is the nominal rf angular frequency (corresponding to FREQ), φ0 corresponds to PHASE

(converted to radians), Φm corresponds to PMMAG (converted to radians), and αpm corresponds to
PMDECAY.

The effective instantaneous rf angular frequency is

ω = ω0 + ωpmΦm cosφpm. (87)

Using all of the above, the voltage seen by a particle arriving at time t is then

V = Ve sin(ω(t− t̄) + φ). (88)

350

MONI

10.64 MONI—A two-plane position monitor, accepting two rpn equations for
the readouts as a function of the actual positions (x and y).

A two-plane position monitor, accepting two rpn equations for the readouts as a function of the
actual positions (x and y).
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

DX M double 0.0 misalignment

DY M double 0.0 misalignment

WEIGHT double 1 weight in correction

TILT double 0.0 rotation about longitudinal
axis

XCALIBRATION double 1 calibration factor for x readout

YCALIBRATION double 1 calibration factor for y readout

XSETPOINT M double 0.0 x steering setpoint

YSETPOINT M double 0.0 y steering setpoint

ORDER short 0 matrix order

XREADOUT STRING NULL rpn expression for x readout
(actual position supplied in
variables x, y

YREADOUT STRING NULL rpn expression for y readout
(actual position supplied in
variables x, y

CO FITPOINT short 0 If nonzero, then closed orbit
values are placed in variables
<name>#<occurence>.xco
and
<name>#<occurence>.yco

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

351

MRFDF

10.65 MRFDF—Zero-length Multipole RF DeFlector from dipole to decapole

Zero-length Multipole RF DeFlector from dipole to decapole
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

FACTOR double 1 A factor by which to multiply
all components.

TILT RAD double 0.0 rotation about longitudinal
axis

A1 V/m double 0.0 Vertically-deflecting dipole

A2 V/m2 double 0.0 Skew quadrupole

A3 V/m3 double 0.0 Skew sextupole

A4 V/m4 double 0.0 Skew octupole

A5 V/m5 double 0.0 Skew decapole

B1 V/m double 0.0 Horizontally-deflecting dipole

B2 V/m2 double 0.0 Normal quadrupole

B3 V/m3 double 0.0 Normal sextupole

B4 V/m4 double 0.0 Normal octupole

B5 V/m5 double 0.0 Normal decapole

FREQUENCY1 HZ double 2856000000 Dipole frequency

FREQUENCY2 HZ double 2856000000 Quadrupole frequency

FREQUENCY3 HZ double 2856000000 Sextupole frequency

FREQUENCY4 HZ double 2856000000 Octupole frequency

FREQUENCY5 HZ double 2856000000 Decapole frequency

PHASE1 HZ double 0.0 Dipole phase

PHASE2 HZ double 0.0 Quadrupole phase

PHASE3 HZ double 0.0 Sextupole phase

PHASE4 HZ double 0.0 Octupole phase

PHASE5 HZ double 0.0 Decapole phase

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates an rf deflector with specified multipole content.

352

Assuming for simplicity that y = 0, the momentum change in the horizontal plane is

∆px =
e

mc2k

5
∑

i=1

ibix
i−1 cosφi, (89)

where k = ω/c and px = βxγ. The deflection is

∆x′ ≈ ∆px
pz

, (90)

where the approximation results from the fact that pz = βzγ also changes in order to satisfy
Maxwell’s equations.

353

MULT

10.66 MULT—A canonical kick multipole.

A canonical kick multipole.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

KNL M−ORDER double 0.0 integrated geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

BORE M double 0.0 bore radius

BTIPL TM double 0.0 integrated field at pole tip,
used if BORE nonzero

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FACTOR double 1 factor by which to multiply
strength

ORDER short 1 multipole order

N KICKS short 4 number of kicks

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

EXPAND HAMILTONIAN short 0 If 1, Hamiltonian is expanded
to leading order.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a multipole element using 4th-order sympletic integration. A single
multipole order, n, is given. The multipole strength is specified by giving

KnL =

(

∂nBy

∂xn

)

x=y=0

L

Bρ
, (91)

where Bρ is the beam rigidity. A quadrupole is n = 1, a sextupole is n = 2, and so on.
The relationship between the pole tip field and KnL is

KnL =
n!BtipL

rn(Bρ)
, (92)

where r is the bore radius.

354

NIBEND

10.67 NIBEND—A numerically-integrated dipole magnet with various extended-
fringe-field models.

A numerically-integrated dipole magnet with various extended-fringe-field models.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bending angle

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT double 0.0 rotation about incoming longi-
tudinal axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FINT double 0.5 edge-field integral

HGAP M double 0.0 half-gap between poles

FP1 M double 10 fringe parameter (tanh model)

FP2 M double 0.0 not used

FP3 M double 0.0 not used

FP4 M double 0.0 not used

FSE double 0.0 fractional strength error

ETILT RAD double 0.0 error rotation about incoming
longitudinal axis

ACCURACY double 0.0001 integration accuracy (for non-
adaptive integration, used as
the step-size)

MODEL STRING linear fringe model (hard-edge, lin-
ear, cubic-spline, tanh, quin-
tic, enge1, enge3, enge5)

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer,
modified-midpoint, two-pass
modified-midpoint, leap-frog,
non-adaptive runge-kutta)

SYNCH RAD long 0 include classical, single-
particle synchrotron radia-
tion?

ADJUST BOUNDARY long 1 adjust fringe boundary posi-
tion to make symmetric tra-
jectory? (Not done if AD-
JUST FIELD is nonzero.)

355

NIBEND continued

A numerically-integrated dipole magnet with various extended-fringe-field models.
Parameter Name Units Type Default Description

ADJUST FIELD long 0 adjust central field strength to
make symmetric trajectory?

FUDGE PATH LENGTH long 1 fudge central path length to
force it to equal the nominal
length L?

FRINGE POSITION long 0 0=fringe centered on refer-
ence plane, -1=fringe inside,
1=fringe outside.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

For the NIBEND element, there are various fringe field models available. In the following descrip-
tions, lf is the extend of the fringe field, which starts at z = 0 for convenience in the expressions.
Also, K = 1

g

∫

−∞∞Fy(z)(1− Fy(z))dz is K. Brown’s fringe field integral (commonly called FINT),

where g is the full magnet gap and ~F = ~B/B0, B0 being the value of the magnetic field well inside
the magnet.

• Linear fringe field:

Fy = zFa (93)

Fz = yFa (94)

Fa = 1/(6Kg) (95)

For this model, the user specifies FINT and HGAP only.

• Cubic-spline fringe field:

Fy = Faz
2 + Fbz

3 + y2(−Fa − 3Fbz) (96)

Fz = (2Faz + 3Fbz
2)y (97)

Fa = 3/l2f (98)

Fb = −2/l3f (99)

lf = 70Kg/9 (100)

For this model, the user specifies FINT and HGAP only.

356

• Tanh-like fringe field:

Fy =
1

2
(1 + tanhFaz) +

1

2
(yFasechFaz)

2 tanhFaz + (101)

1

24
(yFasechFaz)

4sechFaz(11 sinhFaz − sinh 3Faz) (102)

Fz =
1

2
yFasech

2Faz +
1

6
(yFasechFaz)

3sechFaz(2 − cosh 2Faz)) + (103)

1

120
(yFasechFaz)

5sechFaz(33− 26 cosh 2Faz + cosh4Fzz) (104)

Fa = 1/(2Kg) (105)

lf = P1/Fa (106)

For this model, the user specifies FINT and HGAP, along with the parameter FP1, which is the
quantity P1 in the last equation. It determines the length of the fringe field that is integrated.

• Quintic-spline fringe field, to third order in y:

Fy = (Faz
3 + Fbz

4 + Fcz
5) + y2z(3Fa + 6Fbz + 10Fcz

2) (107)

Fz = y(3Faz
2 + 4Fbz

3 + 5Fcz
4) + y3(−Fa − 4Fbz − 10Fcz

2) (108)

Fa = 10/l3f (109)

Fb = −15/l4f (110)

Fc = 6/l5f (111)

lf = 231Kg/25 (112)

For this model, the user specifies FINT and HGAP only.

• Enge model with 3 coefficients:

F0 =
1

1 + ea1+a2z/D+a3(z/D)2
(113)

Fy = F0 −
1

2
y2F

(2)
0 +

1

24
y4F

(4)
0 (114)

Fz = yF
(1)
0 − 1

6
y3F

(3)
0 +

1

120
y5F

(5)
0 (115)

where F
(n)
0 = ∂nF0

∂zn .

The user may choose “enge1”, “enge3”, or “enge5”, where the number indicates the order of
the expansion of Fz with respect to y.

The need only specify FINT and HGAP. The Enge parameters are then automatically deter-
mined to give the correct linear focusing.

However, if user gives non-zero value for FP2, then FINT and HGAP are ignored. FP2, FP3, and
FP4 and taken as the Enge coefficients a1, a2, and a3, respectively.

357

NISEPT

10.68 NISEPT—A numerically-integrated dipole magnet with a Cartesian gra-
dient.

A numerically-integrated dipole magnet with a Cartesian gradient.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

E1 RAD double 0.0 entrance edge angle

B1 1/M double 0.0 normalized gradient
(K1=B1*L/ANGLE)

Q1REF M double 0.0 distance from septum at which
bending radius is L/ANGLE

FLEN M double 0.0 fringe field length

ACCURACY double 0.0001 integration accuracy

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer,
modified-midpoint, two-pass
modified-midpoint, leap-frog,
non-adaptive runge-kutta

MODEL STRING linear fringe model (hard-edge, lin-
ear, cubic-spline, tanh, quintic

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

358

OCTU

10.69 OCTU—An octupole implemented as a third-order matrix. Use KOCT
for symplectic tracking.

An octupole implemented as a third-order matrix. Use KOCT for symplectic tracking.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

K3 1/M3 double 0.0 geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

ORDER short 0 matrix order

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

359

PEPPOT

10.70 PEPPOT—A pepper-pot plate.

A pepper-pot plate.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

RADII M double 0.0 hole radius

TRANSMISSION double 0.0 transmission of material

TILT RAD double 0.0 rotation about longitudinal
axis

THETA RMS RAD double 0.0 rms scattering from material

N HOLES long 0 number of holes

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

360

PFILTER

10.71 PFILTER—An element for energy and momentum filtration.

An element for energy and momentum filtration.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

DELTALIMIT double -1 maximum fractional momen-
tum deviation

LOWERFRACTION double 0.0 fraction of lowest-momentum
particles to remove

UPPERFRACTION double 0.0 fraction of highest-momentum
particles to remove

FIXPLIMITS long 0 fix the limits in p from LOW-
ERFRACTION and UPPER-
FRACTION applied to first
beam

BEAMCENTERED long 0 if nonzero, center for
DELTALIMIT is average
beam momentum

BINS long 1024 number of bins

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

361

QUAD

10.72 QUAD—A quadrupole implemented as a matrix, up to 3rd order. Use
KQUAD for symplectic tracking.

A quadrupole implemented as a matrix, up to 3rd order. Use KQUAD for symplectic tracking.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

K1 1/M2 double 0.0 geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

HKICK RAD double 0.0 horizontal correction kick

VKICK RAD double 0.0 vertical correction kick

HCALIBRATION double 1 calibration factor for horizon-
tal correction kick

VCALIBRATION double 1 calibration factor for vertical
correction kick

HSTEERING short 0 use for horizontal steering?

VSTEERING short 0 use for vertical steering?

ORDER short 0 matrix order

EDGE1 EFFECTS short 1 include entrance edge effects?

EDGE2 EFFECTS short 1 include exit edge effects?

FRINGE TYPE STRING fixed-strength type of fringe: ”inset”, ”fixed-
strength”, or ”integrals”

FFRINGE double 0.0 For non-integrals mode, frac-
tion of length occupied by lin-
ear fringe region.

LEFFECTIVE M double -1 Effective length. Ignored if
non-positive. Cannot be used
with non-zero FFRINGE.

I0P M double 0.0 i0+ fringe integral

I1P M2 double 0.0 i1+ fringe integral

I2P M3 double 0.0 i2+ fringe integral

I3P M4 double 0.0 i3+ fringe integral

LAMBDA2P M3 double 0.0 lambda2+ fringe integral

I0M M double 0.0 i0- fringe integral

362

QUAD continued

A quadrupole implemented as a matrix, up to 3rd order. Use KQUAD for symplectic tracking.
Parameter Name Units Type Default Description

I1M M2 double 0.0 i1- fringe integral

I2M M3 double 0.0 i2- fringe integral

I3M M4 double 0.0 i3- fringe integral

LAMBDA2M M3 double 0.0 lambda2- fringe integral

RADIAL short 0 If non-zero, converts the
quadrupole into a radially-
focusing lens

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a quadrupole using a matrix of first, second, or third order.
As of version 29.2, this element incorporates the ability to have different values for the insertion

and effective lengths. This is invoked when LEFFECTIVE is positive. In this case, the L parameter is
understood to be the physical insertion length. Using LEFFECTIVE is a convenient way to incorporate
the fact that the effective length may differ from the physical length and even vary with excitation,
without having to modify the drift spaces on either side of the quadrupole element.

By default, the element has hard edges and constant field within the defined length, L. However,
this element supports two different methods of implementing fringe fields. Which method is used
is determined by the FRINGE_TYPE parameter.

Edge integral method The most recent and preferred implementation of fringe field effects is
based on edge integrals and is invoked by setting FRINGE_TYPE to “integrals”. This method is
compatible with the use of LEFFECTIVE. However, it provides a first-order matrix only.

The model is based on publications of D. Zhuo et al. [34] and J. Irwin et al. [35], as well as
unpublished work of C. X. Wang (ANL). The fringe field is characterized by 10 integrals given in
equations 19, 20, and 21 of [34]. However, the values input into elegant should be normalized by
K1 or K2

1 , as appropriate.
For the exit-side fringe field, let s1 be the center of the magnet, s0 be the location of the

nominal end of the magnet (for a hard-edge model), and let s2 be a point well outside the magnet.
Using K1,he(s) to represent the hard edge model and K1(s) the actual field profile, we define the
normalized difference as k̃(s) = (K1(s) − K1,he(s))/K1(s1). (Thus, k̃(s) = K̃(s)/K0, using the
notation of Zhou et al.)

363

The integrals to be input to elegant are defined as

i−0 =

∫ s0

s1

k̃(s)ds i+0 =

∫ s2

s0

k̃(s)ds (116)

i−1 =

∫ s0

s1

k̃(s)(s − s0)ds i+1 =

∫ s2

s0

k̃(s)(s − s0)ds (117)

i−2 =

∫ s0

s1

k̃(s)(s− s0)
2ds i+2 =

∫ s2

s0

k̃(s)(s − s0)
2ds (118)

i−3 =

∫ s0

s1

k̃(s)(s− s0)
3ds i+3 =

∫ s2

s0

k̃(s)(s − s0)
3ds (119)

λ−
2 =

∫ s0

s1

ds

∫ s0

s
ds′k̃(s)k̃(s′)(s′ − s) λ+

2 =

∫ s2

s0

ds

∫ s2

s
ds′k̃(s)k̃(s′)(s′ − s) (120)

Normally, the effects are dominated by i−1 and i+1 .

Trapazoidal models This method is based on a third-order matrix formalism and the assump-
tion that the fringe fields depend linearly on z. Although the third-order matrix is computed, it is
important to note that the assumed fields do not satisfy Maxwell’s equations.

To invoke this method, one specifies “inset” or “fixed-strength” for the FRINGE_TYPE parameter
and then provides a non-zero value for FFRINGE. If FFRINGE is zero (the default), then the magnet
is hard-edged regardless of the setting of FRINGE_TYPE. If FFRINGE is positive, then the magnet has
linear fringe fields of length FFRINGE*L/2 at each end. That is, the total length of fringe field from
both ends combined is FFRINGE*L.

Depending on the value of FRINGE TYPE, the fringe fields are modeled as contained within the
length L (“inset” type) or extending symmetrically outside the length L (“fixed-strength” type).

For “inset” type fringe fields, the length of the “hard core” part of the quadrupole is L*(1-FFRINGE).
For “fixed-strength” type fringe fields, the length of the hard core is L*(1-FFRINGE/2). In the lat-
ter case, the fringe gradient reaches 50% of the hard core value at the nominal boundaries of the
magnet. This means that the integrated strength of the magnet does not change as the FFRINGE

parameter is varied. This is not the case with “inset” type fringe fields.

364

QUFRINGE

10.73 QUFRINGE—An element consisting of a linearly increasing or decreas-
ing quadrupole field.

An element consisting of a linearly increasing or decreasing quadrupole field.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

K1 1/M2 double 0.0 peak geometric strength

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

DIRECTION long 0 1=entrance, -1=exit

ORDER long 0 matrix order

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

365

RAMPP

10.74 RAMPP—A momentum-ramping element that changes the central mo-
mentum according to an SDDS-format file of the momentum factor vs
time in seconds.

A momentum-ramping element that changes the central momentum according to an SDDS-format
file of the momentum factor vs time in seconds.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing momentum factor vs time

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use
of data from external files to provide input waveforms. The external files are SDDS files, which
may have many columns. In order to provide a convenient way to specify both the filename and
the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value.
For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A

will be taken from file waveform.sdds. The first column is always the independent variable (e.g.,
time, position, or frequency), while the second column is the dependent quantity.

366

RAMPRF

10.75 RAMPRF—A voltage-, phase-, and/or frequency-ramped RF cavity, im-
plemented like RFCA.

A voltage-, phase-, and/or frequency-ramped RF cavity, implemented like RFCA.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

VOLT V double 0.0 nominal voltage

PHASE DEG double 0.0 nominal phase

FREQ Hz double 500000000 nominal frequency

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

VOLT WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing voltage waveform factor vs
time

PHASE WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing phase offset vs time (re-
quires FREQ WAVEFORM)

FREQ WAVEFORM STRING NULL <filename>=<x>+<y>
form specification of in-
put file giving frequency-
factor vs time (requires
PHASE WAVEFORM)

FIDUCIAL STRING NULL mode for determining fidu-
cial arrival time (light, tmean,
first, pmaximum)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use
of data from external files to provide input waveforms. The external files are SDDS files, which
may have many columns. In order to provide a convenient way to specify both the filename and
the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value.
For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A

367

will be taken from file waveform.sdds. The first column is always the independent variable (e.g.,
time, position, or frequency), while the second column is the dependent quantity.

368

RBEN

10.76 RBEN—A rectangular dipole, implemented as a SBEND with edge an-
gles, up to 2nd order. Use CSBEND for symplectic tracking.

A rectangular dipole, implemented as a SBEND with edge angles, up to 2nd order. Use CSBEND
for symplectic tracking.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 magnet (straight) length

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric focusing strength

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

K2 1/M3 double 0.0 geometric sextupole strength

H1 1/M double 0.0 entrance pole-face curvature

H2 1/M double 0.0 exit pole-face curvature

HGAP M double 0.0 half-gap between poles

FINT double 0.5 edge-field integral

DX M double 0.0 misaligment of entrance

DY M double 0.0 misalignment of entrance

DZ M double 0.0 misalignment of entrance

FSE double 0.0 fractional strength error of all
components

FSE DIPOLE double 0.0 fractional strength error of
dipole component

FSE QUADRUPOLE double 0.0 fractional strength error of
quadrupole component

ETILT RAD double 0.0 error rotation about incoming
longitudinal axis

EDGE1 EFFECTS short 1 include entrance edge effects?

EDGE2 EFFECTS short 1 include exit edge effects?

ORDER short 0 matrix order

EDGE ORDER short 0 edge matrix order

TRANSPORT short 0 use (incorrect) TRANSPORT
equations for T436 of edge?

USE BN short 0 use B1 and B2 instead of K1
and K2 values?

B1 1/M double 0.0 K1 = B1/rho, where rho is
bend radius

369

RBEN continued

A rectangular dipole, implemented as a SBEND with edge angles, up to 2nd order. Use CSBEND
for symplectic tracking.
Parameter Name Units Type Default Description

B2 1/M2 double 0.0 K2 = B2/rho

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

When adding errors, care should be taken to choose the right parameters. The FSE and ETILT

parameters are used for assigning errors to the strength and alignment relative to the ideal values
given by ANGLE and TILT. One can also assign errors to ANGLE and TILT, but this has a different
meaning: in this case, one is assigning errors to the survey itself. The reference beam path changes,
so there is no orbit/trajectory error. The most common thing is to assign errors to FSE and ETILT.
Note that when adding errors to FSE, the error is assumed to come from the power supply, which
means that multipole strengths also change.

Special note about splitting dipoles: when dipoles are long, it is common to want to split them
into several pieces, to get a better look at the interior optics. When doing this, care must be
exercised not to change the optics. elegant has some special features that are designed to reduce
or manage potential problems. At issue is the need to turn off edge effects between the portions of
the same dipole.

First, one can simply use the divide_elements command to set up the splitting. Using this
command, elegant takes care of everything.

Second, one can use a series of dipoles with the same name. In this case, elegant automatically
turns off interior edge effects. This is true when the dipole elements directly follow one another or
are separated by a MARK element.

Third, one can use a series of dipoles with different names. In this case, you must also use the
EDGE1_EFFECTS and EDGE2_EFFECTS parameters to turn off interior edge effects.

370

RCOL

10.77 RCOL—A rectangular collimator.

A rectangular collimator.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

X MAX M double 0.0 half-width in x

Y MAX M double 0.0 half-width in y

DX M double 0.0 misalignment

DY M double 0.0 misalignment

OPEN SIDE STRING NULL which side, if any, is open (+x,
-x, +y, -y)

INVERT short 0 If non-zero, particles inside the
aperture are lost while those
outside are transmitted.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

371

RECIRC

10.78 RECIRC—An element that defines the point to which particles recircu-
late in multi-pass tracking

An element that defines the point to which particles recirculate in multi-pass tracking
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

I RECIRC ELEMENT long 0

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

372

REFLECT

10.79 REFLECT—Reflects the beam back on itself, which is useful for multiple
beamline matching.

Reflects the beam back on itself, which is useful for multiple beamline matching.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

DUMMY long 0

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

373

REMCOR

10.80 REMCOR—An element to remove correlations from the tracked beam
to simulate certain types of correction.

An element to remove correlations from the tracked beam to simulate certain types of correction.
Parallel capable? : no
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

X short 1 remove correlations in x?

XP short 1 remove correlations in x’?

Y short 1 remove correlations in y?

YP short 1 remove correlations in y’?

WITH short 6 coordinate to re-
move correlations with
(1,2,3,4,5,6)=(x,x’,y,y’,s,dP/Po)

ONCE ONLY short 0 compute correction only for
first beam, apply to all?

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

374

RFCA

10.81 RFCA—A first-order matrix RF cavity with exact phase dependence.

A first-order matrix RF cavity with exact phase dependence.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes

375

Parameter Name Units Type Default Description

L M double 0.0 length

VOLT V double 0.0 peak voltage

PHASE DEG double 0.0 phase

FREQ Hz double 500000000 frequency

Q double 0.0 cavity Q (for cavity that
charges up to given voltage
from 0)

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

CHANGE P0 short 0 does cavity change central mo-
mentum?

CHANGE T short 0 set to 1 for long runs to avoid
rounding error in phase

FIDUCIAL STRING NULL mode for determining fidu-
cial arrival time (light, tmean,
first, pmaximum)

END1 FOCUS short 0 include focusing at entrance?

END2 FOCUS short 0 include focusing at exit?

BODY FOCUS MODEL STRING NULL None (default) or SRS (sim-
plified Rosenzweig/Serafini for
standing wave)

N KICKS long 0 Number of kicks to use for kick
method. Set to zero for matrix
method.

DX M double 0.0 misalignment

DY M double 0.0 misalignment

T REFERENCE S double -1 arrival time of reference parti-
cle

LINEARIZE short 0 Linearize phase dependence?

LOCK PHASE short 0 Lock phase to given value re-
gardless of bunch centroid mo-
tion?

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

The phase convention is as follows, assuming a positive rf voltage: PHASE=90 is the crest for
acceleration. PHASE=180 is the stable phase for a storage ring above transition without energy
losses.

The body-focusing model is based on Rosenzweig and Serafini, Phys. Rev. E 49 (2), 1599. As

376

suggested by N. Towne (NSLS), I simplified this to assume a pure pi-mode standing wave.
The CHANGE_T parameter may be needed for reasons that stem from elegant’s internal use of

the total time-of-flight as the longitudinal coordinate. If the accelerator is very long or a large
number of turns are being tracked, rounding error may affect the simulation, introducing spurious
phase jumps. By setting CHANGE_T=1, you can force elegant to modify the time coordinates of
the particles to subtract off NTrf , where Ttf is the rf period and N = ⌊t/Ttf + 0.5⌋. If you are
tracking a ring with rf at some harmonic h of the revolution frequency, this will result in the time
coordinates being relative to the ideal revolution period, Trf ∗ h. If you have multiple rf cavities in
a ring, you need only use this feature on one of them. Also, you can use CHANGE_T=1 if you simply
prefer to have the offset time coordinates in output files and analysis.

N.B.: Do not use CHANGE_T=1 if you have rf cavities that are not at harmonics of one another
or if you have other time-dependent elements that are not resonant.

377

RFCW

10.82 RFCW—A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.

A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

CELL LENGTH M double 0.0 cell length (used to scale
wakes, which are assumed to
be given for a cell, according
to L/CELL LENGTH)

VOLT V double 0.0 voltage

PHASE DEG double 0.0 phase

FREQ Hz double 500000000 frequency

Q double 0.0 cavity Q (for cavity that
charges up to voltage from 0)

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

CHANGE P0 long 0 does element change central
momentum?

CHANGE T long 0 see RFCA documentation

FIDUCIAL STRING NULL mode for determining fidu-
cial arrival time (light, tmean,
first, pmaximum)

END1 FOCUS long 0 include focusing at entrance?

END2 FOCUS long 0 include focusing at exit?

BODY FOCUS MODEL STRING NULL None (default) or SRS (sim-
plified Rosenzweig/Serafini for
standing wave)

N KICKS long 0 Number of kicks to use for kick
method. Set to zero for matrix
method.

ZWAKE long 1 If zero, longitudinal wake is
turned off.

TRWAKE long 1 If zero, transverse wakes are
turned off.

WAKEFILE STRING NULL name of file containing Green
functions

ZWAKEFILE STRING NULL if WAKEFILE=NULL, op-
tional name of file containing
longitudinal Green function

378

RFCW continued

A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.
Parameter Name Units Type Default Description

TRWAKEFILE STRING NULL if WAKEFILE=NULL, op-
tional name of file containing
transverse Green functions

TCOLUMN STRING NULL column containing time data

WXCOLUMN STRING NULL column containing x Green
function

WYCOLUMN STRING NULL column containing y Green
function

WZCOLUMN STRING NULL column containing longitudi-
nal Green function

N BINS long 0 number of bins for current his-
togram

INTERPOLATE long 0 interpolate wake?

SMOOTHING long 0 Use Savitzky-Golay filter to
smooth current histogram?

SG HALFWIDTH long 4 Savitzky-Golay filter half-
width for smoothing

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

DX M double 0.0 misalignment

DY M double 0.0 misalignment

LINEARIZE long 0 Linearize phase dependence?

LSC long 0 Include longitudinal space-
charge impedance?

LSC BINS long 1024 Number of bins for LSC calcu-
lations

LSC INTERPOLATE long 1 Interpolate computed LSC
wake?

LSC LOW FREQUENCY CUTOFF0 double -1 Highest spatial frequency at
which low-frequency cutoff fil-
ter is zero. If not positive,
no low-frequency cutoff filter is
applied. Frequency is in units
of Nyquist (0.5/binsize).

LSC LOW FREQUENCY CUTOFF1 double -1 Lowest spatial frequency
at which low-frequency
cutoff filter is 1. If
not given, defaults to
LOW FREQUENCY CUTOFF1.

379

RFCW continued

A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.
Parameter Name Units Type Default Description

LSC HIGH FREQUENCY CUTOFF0 double -1 Spatial frequency at which
smoothing filter begins for
LSC. If not positive, no fre-
quency filter smoothing is
done. Frequency is in units of
Nyquist (0.5/binsize).

LSC HIGH FREQUENCY CUTOFF1 double -1 Spatial frequency at which
smoothing filter is 0 for
LSC. If not given, defaults to
HIGH FREQUENCY CUTOFF0.

LSC RADIUS FACTOR double 1.7 LSC radius is
(Sx+Sy)/2*RADIUS FACTOR

WAKES AT END long 0 Do wake kicks at end of seg-
ment (for backward compati-
bility)?

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is a combination of the RFCA, WAKE, and TRWAKE elements. As such, it provides
combined simulation of an rf cavity with longitudinal and transverse wakes, as well as longitudinal
space charge.

For the wakes, the input files and their interpretation are identical to WAKE and TRWAKE, except
that the transverse and longitudinal wakes are interpreted as the wakes for a single cell of length
given by the CELL LENGTH parameter.

Users should read the entries for WAKE, TRWAKE, and RFCA for more details on this element.
This element simulates longitudinal space charge using the method described in [22]. This is

based on the longitudinal space charge impedance per unit length

Zlsc(k) =
iZ0

πkr2b

[

1− krb
γ

K1

(

krb
γ

)]

(121)

380

RFDF

10.83 RFDF—A simple traveling or standing wave deflecting RF cavity.

A simple traveling or standing wave deflecting RF cavity.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

PHASE DEG double 0.0 phase

TILT RAD double 0.0 rotation about longitudinal
axis

FREQUENCY HZ double 2856000000 frequency

VOLTAGE V double 0.0 voltage

FSE double 0.0 Fractional Strength Error

B2 double 0.0 Normalized sextupole
strength, kick=(1+b2*(x2̂-
y2̂)/2)...

TIME OFFSET S double 0.0 time offset (adds to phase)

N KICKS long 0 number of kicks (0=autoscale)

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

STANDING WAVE short 0 If nonzero, then cavity is
standing wave.

VOLTAGE WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing voltage waveform factor vs
time

VOLTAGE PERIODIC short 0 If non-zero, voltage waveform
is periodic with period given
by time span.

ALIGN WAVEFORMS short 0 If non-zero, waveforms’ t=0 is
aligned with first bunch arrival
time.

VOLTAGE NOISE double 0.0 Rms fractional noise level for
voltage.

PHASE NOISE DEG double 0.0 Rms noise level for phase.

GROUP VOLTAGE NOISE double 0.0 Rms fractional noise level for
voltage linked to group.

GROUP PHASE NOISE DEG double 0.0 Rms noise level for phase
linked to group.

VOLTAGE NOISE GROUP long 0 Group number for voltage
noise.

381

RFDF continued

A simple traveling or standing wave deflecting RF cavity.
Parameter Name Units Type Default Description

PHASE NOISE GROUP long 0 Group number for phase noise.

START PASS long -1 If non-negative, pass on which
to start modeling cavity.

END PASS long -1 If non-negative, pass on which
to end modeling cavity.

DRIFT MATRIX short 0 If non-zero, calculations in-
volving matrices assume this
element is a drift space.

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

MAGNETIC DEFLECTION short 0 If non-zero, deflection is as-
sumed to be performed by
a magnetic field, rather than
electric field (default).

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This cavity provides a transverse deflection that is constant as a function of transverse coordi-
nates. It is probably the best model for a real cavity, because real cavities contain a mixture of
TM- and TE-like modes that result in a uniform deflection.

For simplicity of use, the deflection is specified as a voltage, even though it originates in a
magnetic field. The magnetic field is

B = B0ŷ cosωt (122)

The corresponding electric field is obtained from Faraday’s law (MKS units)

(

∇× ~E
)

y
= −

(

∂ ~B

∂t

)

y

. (123)

Assuming Ex = Ey = 0, we have
Ez = B0ωx sinωt. (124)

The change in momenta (in units of mc) in passing through a slice of length ∆L is

∆px =
qB0∆L

mc
cosωt (125)

∆py = 0 (126)

∆pz =
qB0ωx∆L

mc2
sinωt (127)

382

If we want to think in terms of a deflecting voltage, we can re-write this as

∆px =
qV

mc2
cosωt (128)

∆py = 0 (129)

∆pz =
qV

mc2
kx sinωt, (130)

where k = ω/c.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use
of data from external files to provide input waveforms. The external files are SDDS files, which
may have many columns. In order to provide a convenient way to specify both the filename and
the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value.
For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A

will be taken from file waveform.sdds. The first column is always the independent variable (e.g.,
time, position, or frequency), while the second column is the dependent quantity.

383

RFMODE

10.84 RFMODE—A simulation of a beam-driven TM monopole mode of an
RF cavity.

A simulation of a beam-driven TM monopole mode of an RF cavity.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

RA Ohm double 0.0 shunt impedance, Ra=V2̂/P

RS Ohm double 0.0 shunt impedance (Rs=Ra/2)

Q double 0.0 cavity Q

FREQ Hz double 0.0 Resonant frequency of the cav-
ity mode

CHARGE C double 0.0 beam charge (or use CHARGE
element)

INITIAL V V double 0.0 initial beam-loading voltage

INITIAL PHASE RAD double 0.0 initial beam-loading phase

INITIAL T S double 0.0 time at which INITIAL V and
INITIAL PHASE held

BETA double 0.0 normalized load impedance

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 20 number of bins for current his-
togram

INTERPOLATE long 0 if non-zero, interpolate voltage
within bins

PRELOAD long 0 preload cavity with steady-
state field

PRELOAD CHARGE C double 0.0 beam charge used for preload-
ing calculations

PRELOAD FACTOR double 1 multiply preloaded field by
this value

PRELOAD HARMONIC long 0 If detuning from harmonic is
greater than half the revolu-
tion frequency, automatic de-
termination of the rf harmonic
will fail. Give the harmonic
explicitly with this parameter.

RIGID UNTIL PASS long 0 don’t affect the beam until this
pass

DETUNED UNTIL PASS long 0 cavity is completely detuned
until this pass

384

RFMODE continued

A simulation of a beam-driven TM monopole mode of an RF cavity.
Parameter Name Units Type Default Description

SAMPLE INTERVAL long 1 passes between samples to
RECORD file

FLUSH INTERVAL long 1000 samples between flushing out-
put to RECORD file

RECORD STRING NULL output file for cavity fields

SINGLE PASS long 0 if nonzero, don’t accumulate
field from pass to pass

PASS INTERVAL long 1 interval in passes at which to
apply PASS INTERVAL times
the field (may increase speed)

FREQ WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file
giving frequency/f0 vs time,
where f0 is the frequency given
with the FREQ parameter

Q WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing qualityFactor/Q0 vs time,
where Q0 is the quality factor
given the the Q parameter.

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the
impedance to full strength.

BINLESS long 0 If nonzero, use algorithm
that doesn’t requiring binning.
Best for few particles, widely
spaced.

RESET FOR EACH STEP long 1 If nonzero, voltage and phase
are reset for each simulation
step.

LONG RANGE ONLY long 0 If nonzero, induced voltage
from present turn does not af-
fect bunch. Results are not
self-consistent!

385

RFMODE continued

A simulation of a beam-driven TM monopole mode of an RF cavity.
Parameter Name Units Type Default Description

ALLOW UNBINNED PARTICLES long 0 If nonzero, will keep running
even if some particles fall out-
side the binning region. Use
with caution!

N CAVITIES long 1 effect is multiplied by this
number, simulating N identi-
cal cavities

BUNCHED BEAM MODE long 1 If 1, then do calculations
bunch-by-bunch. If >1, use
pseudo bunches.

BUNCH INTERVAL S double 0.0 For pseudo-bunch mode, time
between bunches.

DRIVE FREQUENCY Hz double 0.0 drive frequency from genera-
tor. If zero, no generator volt-
age is applied.

V SETPOINT V double 0.0 setpoint for total cavity volt-
age

PHASE SETPOINT DEG double 0.0 setpoint for total cavity phase

UPDATE INTERVAL long 1 update interval of feedback in
units of rf period

READ OFFSET long 0 Offset in buckets of point at
which voltage and phase are
read for feedback relative to
the first bunch passage. A
positive value corresponds to
reading before bunch passage.

ADJUSTMENT START long 0 Pass on which to begin adjust-
ment of the effective voltage
setpoint.

ADJUSTMENT END long 0 Pass on which to stop adjust-
ment of the effective voltage
setpoint.

ADJUSTMENT INTERVAL long 100 Interval in passes between ad-
justment of the effective volt-
age setpoint.

386

RFMODE continued

A simulation of a beam-driven TM monopole mode of an RF cavity.
Parameter Name Units Type Default Description

ADJUSTMENT FRACTION double 0.0 Fraction of voltage setpoint er-
ror taken out on each adjust-
ment step

AMPLITUDE FILTER STRING NULL IIR filter specification for am-
plitude feedback

PHASE FILTER STRING NULL IIR filter specification for
phase feedback

IN PHASE FILTER STRING NULL IIR filter specification for in-
phase component feedback

QUADRATURE FILTER STRING NULL IIR filter specification for
quadrature component feed-
back

FEEDBACK RECORD STRING NULL output file for feedback data

MUTE GENERATOR long -1 If nonnegative, gives the pass
on which to mute the genera-
tor. This simulates an rf trip.

NOISE ALPHA GEN STRING NULL <filename>=<x>+<y>
specifying alpha(t) for genera-
tor noise.

NOISE PHI GEN STRING NULL <filename>=<x>+<y>
specifying dphi(t) for genera-
tor noise, in radians.

NOISE ALPHA V STRING NULL <filename>=<x>+<y>
specifying alpha(t) for voltage
noise.

NOISE PHI V STRING NULL <filename>=<x>+<y>
specifying dphi(t) for voltage
noise, in radians.

NOISE I GEN STRING NULL <filename>=<x>+<y>
specifying ni(t) for in-phase
generator noise.

NOISE Q GEN STRING NULL <filename>=<x>+<y>
specifying nq(t) for quadra-
ture generator noise.

387

RFMODE continued

A simulation of a beam-driven TM monopole mode of an RF cavity.
Parameter Name Units Type Default Description

NOISE I V STRING NULL <filename>=<x>+<y>
specifying ei(t) for in-phase
voltage noise.

NOISE Q V STRING NULL <filename>=<x>+<y>
specifying eq(t) for quadra-
ture voltage noise.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a beam-driven monopole mode cavity using the fundamental theorem
of beam loading and phasor rotation. In addition, a generator-driven field may be included using
a feedback system [44].

Note on phase conventions: the phase convention for the PHASE_SETPOINT parameter of RFMODE
is the same as for the PHASE parameter of RFCA. However, in the output files from RFMODE, i.e., the
files requested with the RECORD and FEEDBACK_RECORD parameters, a different convention is used,
which differs by −90 degrees from the PHASE_SETPOINT parameter.

The feedback implementation uses either amplitude and phase feedback or else in-phase and
quadrature feedback. Figure 3 shows the model used for the feedback system. More information is
available in [44]. Feedback is active when a non-zero value is given for DRIVE_FREQUENCY and when
either AMPLITUDE_FILTER and PHASE_FILTER or else IN_PHASE_FILTER and QUADRATURE_FILTER

are given.
The feedback loop reads the cavity state and acts on the generator at a fixed interval (in buckets)

of UPDATE_INTERVAL. The timing of this activity is aligned to the arrival time of the first bunch
in the RFMODE element. By default (READ_OFFSET=0), the timing is such that the state is read
just before the next arrival of that bunch; in particular, it is 180 degrees ahead of that arrival. If
bunches are equally spaced by, say Nb buckets, the UPDATE_INTERVAL parameter should ideally be
mNb, where m > 0 is an integer. This ensures that the state is read at a fixed timing relative to
the bunches.

The rf feedback feature makes use of the voltage amplitude measured when there is no bunch
present. The RECORD file shows the voltage seen by the beam, computed by averaging over the
voltage for each particle. These may deviate by values from a few percent to of order ten percent,
depending on the loss factor for the cavity and the number of bunchess; this is caused by the
fact that the rate at which an intense bunch removes energy from the cavity will typically, albeit
briefly, exceed the power from the generator. To reduce the impact of this effect, one may use the
ADJUSTMENT_FRACTION, ADJUSTMENT_START, and ADJUSTMENT_INTERVAL parameters to modify the
voltage setpoint. If ADJUSTMENT_FRACTION is non-zero, then for every ADJUSTMENT_INTERVALth pass
after the ADJUSTMENT_STARTth pass, the voltage setpoint will be adjusted based on a comparison
of the bunch-averaged voltage to the user’s setpoint. E.g., if the bunch-averaged voltage is 100 V

388

too low and ADJUSTMENT_FRACTION is 0.1, the voltage setpoint will be raised by 10 V. Users should
note that if ADJUSTMENT_FRACTION is too large or ADJUSTMENT_INTERVAL is too small, the system
may be unstable.

_

+

✁set

+

+

Polar

To

Cartesian

_

+

+

+ Cavity
Dynamic

Model

VI

Vset

RF

Cavity IB

Accelerator

Physics

Generator

Induced

Voltage

Vcav

VG VB

|IG |
o

IGo

+

+
Vcav

+ +

Amplitude

Feedback

Filters

Phase

Feedback

Filters

+

+

+

In-Phase

Feedback

Filters

Quadrature

Feedback

Filters

_

+ vI set

vQ set _

+

RF Cavity
Impedance

Cartesian

To

Polar

vI

vQ

Parametric
Noise

[1+�e(t)]

✂e(t)

Polar

To

Cartesian

Vdet

dI

dQ

|Vdet|

|Vdet|

Vdet

dI

LLRF Receiver

RF Generator

Polar

To

Cartesian

[1+�g(t)]

✂g(t)

Generator
Parametric

Noise

+

ni (t)

nq (t)

Generator
Additive

Noise

Cartesian

To

Polar

Cartesian

To

Polar

+

ei (t)

eq (t)

Additive
Noise

dQ

IQ

II

VQ

+

+

Figure 3: Rf feedback model used by the RFMODE element.

Normally, the field dumped in the cavity by one particle affects trailing particles in the same
turn. However, if one is also using a WAKE or ZLONGIT element to simulate the short-range wake
of the cavity, this would be double-counting. In that case, one can use LONG_RANGE_ONLY=1 to
suppress the same-turn effects of the RFMODE element.

Two output files are available: the RECORD file includes bunch-by-bunch data on the beam-
induced fields and the total cavity fields. The FEEDBACK_RECORD file includes tick-by-tick data from
the feedback system simulation; writing this file this can significantly impact performance.

NB: when BUNCHED_BEAM_MODE is set to a value other than 1, in order to obtain the effect of
several bunches while tracking only one bunch, the total charge set with the TOTAL parameter of
the CHARGE element should equal the charge in a single bunch, not the entire beam. However, when
BUNCHED_BEAM_MODE=1 (allowing an indeterminant number of bunches to be actually present), then
TOTAL should be the total for all bunches together.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use
of data from external files to provide input waveforms. The external files are SDDS files, which
may have many columns. In order to provide a convenient way to specify both the filename and
the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value.
For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A

will be taken from file waveform.sdds. The first column is always the independent variable (e.g.,
time, position, or frequency), while the second column is the dependent quantity.

389

RFTM110

10.85 RFTM110—Tracks through a TM110-mode (deflecting) rf cavity with all
magnetic and electric field components. NOT RECOMMENDED—See
below.

Tracks through a TM110-mode (deflecting) rf cavity with all magnetic and electric field components.
NOT RECOMMENDED—See below.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no

390

Parameter Name Units Type Default Description

PHASE DEG double 0.0 phase

TILT RAD double 0.0 rotation about longitudinal
axis

FREQUENCY HZ double 2856000000 frequency

VOLTAGE V double 0.0 peak deflecting voltage

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

VOLTAGE WAVEFORM STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing voltage waveform factor vs
time

VOLTAGE PERIODIC short 0 If non-zero, voltage waveform
is periodic with period given
by time span.

ALIGN WAVEFORMS short 0 If non-zero, waveforms’ t=0 is
aligned with first bunch arrival
time.

VOLTAGE NOISE double 0.0 Rms fractional noise level for
voltage.

PHASE NOISE DEG double 0.0 Rms noise level for phase.

GROUP VOLTAGE NOISE double 0.0 Rms fractional noise level for
voltage linked to group.

GROUP PHASE NOISE DEG double 0.0 Rms noise level for phase
linked to group.

VOLTAGE NOISE GROUP long 0 Group number for voltage
noise.

PHASE NOISE GROUP long 0 Group number for phase noise.

START PASS long -1 If non-negative, pass on which
to start modeling cavity.

END PASS long -1 If non-negative, pass on which
to end modeling cavity.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

NB: Although this element is correct insofar as it uses the fields for a pure TM110 mode, it is
recommended that the RFDF element be used instead. In a real deflecting cavity with entrance and
exit tubes, the deflecting mode is a hybrid TE/TM mode, in which the deflection has no dependence
on the radial coordinate.

To derive the field expansion, we start with some results from Jackson[17], section 8.7. The

391

longitudinal electric field for a TM mode is just

Ez = −2iE0Ψ(ρ, φ) cos
(pπz

d

)

e−iωt, (131)

where p is an integer, d is the length of the cavity, and we use cylindrical coordinates (ρ, φ, z). The
factor of −2i represents a choice of sign and phase convention. We are interested in the TM110
mode, so we set p = 0. In this case, we have

Ex = Ey = 0 (132)

and (using CGS units)

~H = −2iE0
iǫω

ck2
ẑ ×∇Ψe−iωt. (133)

For a cylindrical cavity, the function Ψ for the m = 1 aximuthal mode is

Ψ(ρ, φ) = J1(kρ) cos φ, (134)

where k = x11/R, x11 is the first zero of J1(x), and R is the cavity radius. We don’t need to know
the cavity radius, since k = ω/c, where ω is the resonant frequency. By choosing cosφ for the
aximuthal dependence, we’ll get a magnetic field primarily in the vertical direction.

In MKS units, the magnetic field is

~B =
2E0

kc
e−iωt

(

ρ̂
J1(kρ)

ρ
sinφ+ φ̂ cosφ

∂J1(kρ)

∂ρ

)

. (135)

Using mathematica, we expanded these expressions to sixth order in k ∗ ρ. Here, we present
only the expressions to second order. Taking the real parts only, we now have

Ez ≈ E0kρ cosφ sinωt (136)

cBρ ≈ E0

(

1− k2ρ2

8

)

sinφ cos ωt (137)

cBφ ≈ E0

(

1− 3k2ρ2

8

)

cosφ cosωt (138)

The Cartesian components of ~B can be computed easily

cBx = cBρ cosφ− cBφ sinφ (139)

=
E0

4
ρ2k2 cosφ sin φ cosωt (140)

cBy = cBρ sinφ+ cBφ cosφ (141)

= E0

(

1− k2ρ2(2 cos2 φ+ 1)

8

)

cosωt (142)

The Lorentz force on an electron is F = −eEz ẑ − ec~β × ~B, giving

Fx/e = βzcBy (143)

Fy/e = −βzcBx (144)

Fz/e = −Ez − βxcBy + βycBx (145)

392

We see that for ρ → 0, we have Ez = 0, Bx = 0, and

cBy = E0 cosωt. (146)

Hence, for ωt = 0 and E0 > 0 we have Fx > 0. This explains our choice of sign and phase
convention above. Indeed, owing to the factor of 2, we have a peak deflection of eE0L/E, where L
is the cavity length and E the beam energy. Thus, if V = E0L is specified in volts, and the beam
energy expressed in electron volts, the deflection is simply the ratio of the two. As a result, we’ve
chosen to parametrize the deflection strength simply by referring to the “deflecting voltage,” V .

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use
of data from external files to provide input waveforms. The external files are SDDS files, which
may have many columns. In order to provide a convenient way to specify both the filename and
the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value.
For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A

will be taken from file waveform.sdds. The first column is always the independent variable (e.g.,
time, position, or frequency), while the second column is the dependent quantity.

393

RFTMEZ0

10.86 RFTMEZ0—A TM-mode RF cavity specified by the on-axis Ez field.

A TM-mode RF cavity specified by the on-axis Ez field.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

FREQUENCY HZ double 2856000000 frequency

PHASE RAD double 0.0 phase

EZ PEAK V double 0.0 Peak on-axis longitudinal elec-
tric field

TIME OFFSET S double 0.0 time offset (adds to phase)

PHASE REFERENCE long 0 phase reference number (to
link to other time-dependent
elements)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

ETILT RAD double 0.0 misalignment

EYAW RAD double 0.0 misalignment

EPITCH RAD double 0.0 misalignment

N STEPS long 100 number of steps (for nonadap-
tive integration)

RADIAL ORDER short 1 highest order in off-axis expan-
sion

CHANGE P0 short 0 does element change central
momentum?

INPUTFILE STRING NULL file containing Ez vs z at r=0

ZCOLUMN STRING NULL column containing z values

EZCOLUMN STRING NULL column containing Ez values

SOLENOID FILE STRING NULL file containing map of Bz and
Br vs z and r. Each page con-
tains values for a single r.

SOLENOID ZCOLUMN STRING NULL column containing z values for
solenoid map.

SOLENOID RCOLUMN STRING NULL column containing r values for
solenoid map. If omitted, data
is assumed to be for r=0 and
an on-axis expansion is per-
formed.

394

RFTMEZ0 continued

A TM-mode RF cavity specified by the on-axis Ez field.
Parameter Name Units Type Default Description

SOLENOID BZCOLUMN STRING NULL column containing Bz values
for solenoid map.

SOLENOID BRCOLUMN STRING NULL column containing Br values
for solenoid map. If omitted,
data is assumed to be for r=0
and an on-axis expansion is
performed.

SOLENOID FACTOR double 1 factor by which to multiply
solenoid fields.

SOLENOID DX M double 0.0 misalignment

SOLENOID DY M double 0.0 misalignment

SOLENOID DZ M double 0.0 misalignment

SOLENOID ETILT RAD double 0.0 misalignment

SOLENOID EYAW RAD double 0.0 misalignment

SOLENOID EPITCH RAD double 0.0 misalignment

BX STRAY double 0.0 Uniform stray horizontal field

BY STRAY double 0.0 Uniform stray vertical field

ACCURACY double 0.0001 integration accuracy

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

FIELD TEST FILE STRING NULL filename for output of test
fields (r=0)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

395

RIMULT

10.87 RIMULT—Multiplies radiation integrals by a given factor. Use to com-
pute emittance for collection of various types of cells.

Multiplies radiation integrals by a given factor. Use to compute emittance for collection of various
types of cells.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

FACTOR double 1 factor

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

396

RMDF

10.88 RMDF—A linearly-ramped electric field deflector, using an approximate
analytical solution FOR LOW ENERGY PARTICLES.

A linearly-ramped electric field deflector, using an approximate analytical solution FOR LOW
ENERGY PARTICLES.
Parallel capable? : no
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

TILT RAD double 0.0 rotation about longitudinal
axis

RAMP TIME S double 1e-09 length of ramp

VOLTAGE V double 0.0 full voltage

GAP M double 0.01 gap between plates

TIME OFFSET S double 0.0 time offset of ramp start

N SECTIONS long 10 number of sections

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

397

ROTATE

10.89 ROTATE—An element that rotates the beam about the longitudinal axis.

An element that rotates the beam about the longitudinal axis.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

TILT RAD double 0.0 rotation about longitudinal
axis

EXCLUDE FLOOR short 0 if non-zero, does not affect the
floor coordinates

EXCLUDE OPTICS short 0 if non-zero, does not affect the
optics (i.e., transfer matrix is
unit matrix)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

The sign convention for the TILT parameter is confusing on this element. In particular, a positive
TILT rotates the beam counter-clockwise about the longitudinal axis. This is the opposite sense to
rotations of elements, where a positive TILT rotates the element clockwise about the longitudinal
axis.

Hence, if one wanted to rotate a series of elements by 0.1 rad, one could do the following:

ROT1: ROTATE,TILT=0.1

ROT2: ROTATE,TILT=-0.1

BL: line=(ROT1,...,ROT2)

The TILT value for ROT1 is the same (including the sign) as the individual TILT values one would
give to all the elements represented by

398

SAMPLE

10.90 SAMPLE—An element that reduces the number of particles in the beam
by interval-based or random sampling.

An element that reduces the number of particles in the beam by interval-based or random sampling.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

FRACTION double 1 fraction to keep

INTERVAL long 1 interval between sampled par-
ticles

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

399

SBEN

10.91 SBEN—A sector dipole implemented as a matrix, up to 2nd order. Use
CSBEND for symplectic tracking.

A sector dipole implemented as a matrix, up to 2nd order. Use CSBEND for symplectic tracking.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

K1 1/M2 double 0.0 geometric focusing strength

E1 RAD double 0.0 entrance edge angle

E2 RAD double 0.0 exit edge angle

TILT RAD double 0.0 rotation about incoming longi-
tudinal axis

K2 1/M3 double 0.0 geometric sextupole strength

H1 1/M double 0.0 entrance pole-face curvature

H2 1/M double 0.0 exit pole-face curvature

HGAP M double 0.0 half-gap between poles

FINT double 0.5 edge-field integral

DX M double 0.0 misaligment of entrance

DY M double 0.0 misalignment of entrance

DZ M double 0.0 misalignment of entrance

FSE double 0.0 fractional strength error of all
components

FSE DIPOLE double 0.0 fractional strength error of
dipole component

FSE QUADRUPOLE double 0.0 fractional strength error of
quadrupole component

ETILT RAD double 0.0 error rotation about incoming
longitudinal axis

EDGE1 EFFECTS short 1 include entrance edge effects?

EDGE2 EFFECTS short 1 include exit edge effects?

ORDER short 0 matrix order

EDGE ORDER short 0 edge matrix order

TRANSPORT short 0 use (incorrect) TRANSPORT
equations for T436 of edge?

USE BN short 0 use B1 and B2 instead of K1
and K2 values?

B1 1/M double 0.0 K1 = B1/rho, where rho is
bend radius

400

SBEN continued

A sector dipole implemented as a matrix, up to 2nd order. Use CSBEND for symplectic tracking.
Parameter Name Units Type Default Description

B2 1/M2 double 0.0 K2 = B2/rho

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

Some confusion may exist about the edge angles, particularly the signs. For a sector magnet,
we have of course E1=E2=0. For a symmetric rectangular magnet, E1=E2=ANGLE/2. If ANGLE is
negative, then so are E1 and E2. To understand this, imagine a rectangular magnet with positive
ANGLE. If the magnet is flipped over, then ANGLE becomes negative, as does the bending radius ρ.
Hence, to keep the focal length of the edge 1/f = − tanEi/ρ constant, we must also change the
sign of Ei.

When adding errors, care should be taken to choose the right parameters. The FSE and ETILT

parameters are used for assigning errors to the strength and alignment relative to the ideal values
given by ANGLE and TILT. One can also assign errors to ANGLE and TILT, but this has a different
meaning: in this case, one is assigning errors to the survey itself. The reference beam path changes,
so there is no orbit/trajectory error. The most common thing is to assign errors to FSE and ETILT.
Note that when adding errors to FSE, the error is assumed to come from the power supply, which
means that multipole strengths also change.

Special note about splitting dipoles: when dipoles are long, it is common to want to split them
into several pieces, to get a better look at the interior optics. When doing this, care must be
exercised not to change the optics. elegant has some special features that are designed to reduce
or manage potential problems. At issue is the need to turn off edge effects between the portions of
the same dipole.

First, one can simply use the divide_elements command to set up the splitting. Using this
command, elegant takes care of everything.

Second, one can use a series of dipoles with the same name. In this case, elegant automatically
turns off interior edge effects. This is true when the dipole elements directly follow one another or
are separated by a MARK element.

Third, one can use a series of dipoles with different names. In this case, you must also use the
EDGE1_EFFECTS and EDGE2_EFFECTS parameters to turn off interior edge effects.

401

SCATTER

10.92 SCATTER—A scattering element to add gaussian random numbers to
particle coordinates.

A scattering element to add gaussian random numbers to particle coordinates.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

X M double 0.0 rms scattering level for x

XP double 0.0 rms scattering level for x’

Y M double 0.0 rms scattering level for y

YP double 0.0 rms scattering level for y’

DP double 0.0 rms scattering level for (p-
pCentral)/pCentral

PROBABILITY double 1 Probability that any particle
will be selected for scattering.

STARTONPASS long 0 Pass number to start on.

ENDONPASS long -1 Pass number to end on (inclu-
sive). Ignored if negative.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

402

SCMULT

10.93 SCMULT—Tracks through a zero length multipole to simulate space
charge effects

Tracks through a zero length multipole to simulate space charge effects
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

Important notes:

• This element is not designed for space charge calculations in guns or linacs. It is only intended
for simulating space charge in rings.

• If inserting SCMULT elements using insert_sceffects, see the manual page for insert_sceffects
for other caveats and pitfalls.

This element simulates transverse space charge (SC) kicks using K.Y. Ng’s formula [24].
The linear SC force is given by:

∆x′ =
KscLe

−z2/(2σ2
z)

√
2πσz

x

σx(σx + σy)

∆y′ =
KscLe

−z2/(2σ2
z)

√
2πσz

y

σy(σx + σy)
(147)

where Ksc =
2Nre
γ3β2 , L is the integrating length, σx,y,z are rms beam size.

The non-linear SC force is given by:

∆x′ =
KscLe

−z2/(2σ2
z)

2σz
√

σ2
x − σ2

y

Im

w

x+ iy
√

2(σ2
x − σ2

y)

− e
− x2

2σ2
x
− y2

2σ2
y w

x
σy

σx
+ iy σx

σy
√

2(σ2
x − σ2

y)

∆y′ =
KscLe

−z2/(2σ2
z)

2σz
√

σ2
x − σ2

y

Re

w

x+ iy
√

2(σ2
x − σ2

y)

− e
− x2

2σ2
x
− y2

2σ2
y w

x
σy

σx
+ iy σx

σy
√

2(σ2
x − σ2

y)

 (148)

where w(z) is the complex error function

w(z) = e−z2

1 +
2i√
π

z
∫

0

eζ
2

dζ

 (149)

403

Equation 148 appear to diverge when σx = σy. In fact, this is not true, because the expressions
inside the square brackets will provide zero too at σx = σy to cancel the poles outside. In our code,
we calculate this equation at 1.01σx and 0.99σx, and average the total effects.

To invoke the calculation, one must use set up command “insert sceffects” proceed “run setup”
and “Twiss output” command proceed “track”.

404

SCRAPER

10.94 SCRAPER—A collimating element that sticks into the beam from one
side only. The directions 0, 1, 2, and 3 are from +x, +y, -x, and -y,
respectively.

A collimating element that sticks into the beam from one side only. The directions 0, 1, 2, and 3
are from +x, +y, -x, and -y, respectively.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes

405

Parameter Name Units Type Default Description

L M double 0.0 length

XO M double 0.0 radiation length

ENERGY DECAY long 0 If nonzero, then particles will
lose energy due to material
using a simple exponential
model.

ENERGY STRAGGLE long 0 Use simple-minded energy
straggling model coupled with
ENERGY DECAY=1?

NUCLEAR BREMSSTRAHLUNG long 0 Model energy loss to nuclear
bremsstrahlung? If enabled,
set ENERGY DECAY=0 to
disable simpler model.

ELECTRON RECOIL long 0 If non-zero, electron recoil
during Coulomb scattering is
included (results in energy
change).

Z long 0 Atomic number

A AMU double 0.0 Atomic mass

RHO KG/M3 double 0.0 Density

PLIMIT double 0.05 Probability cutoff for each
slice

POSITION M double 0.0 position of edge

DX M double 0.0 misalignment

DY M double 0.0 misalignment

INSERT FROM STRING NULL direction from which inserted
(+x, -x, x, +y, -y, y)

DIRECTION long -1 Deprecated. use IN-
SERT FROM.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

The method used for material modeling is the same as that used for the MATTER element.
The DIRECTION parameter is deprecated and the more versatile INSERT_FROM parameter should

be used instead. The values for the latter determine from which side the scraper is inserted. E.g.,
INSERT_FROM="-x",POSITION=0.005 means the scraper is inserted from the negative x side and
extends from x = −∞ to x = 0.005m.

INSERT_FROM="x" or INSERT_FROM="y" means the scraper is inserted from both sides, in which
case the interpretation of the position is different. E.g., INSERT_FROM="x",POSITION=0.005means
that only the region x : [−0.005, 0.005]m is clear.

406

SCRIPT

10.95 SCRIPT—An element that allows transforming the beam using an ex-
ternal script.

An element that allows transforming the beam using an external script.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 Length to be used for matrix-
based operations such as twiss
parameter computation.

COMMAND STRING NULL SDDS-compliant command to
apply to the beam. Use the se-
quence %i to represent the in-
put filename and %o to repre-
sent the output filename.

USE CSH short 1 Use C-shell for execution (may
be slower)?

VERBOSITY short 0 Set the verbosity level.

RPN PARAMETERS short 0 If nonzero, then parameters
from the script output file are
loaded into RPN variables.

START PASS long -1 Start script action on this
pass. Before that, behaves like
a drift space.

END PASS long -1 End script action after this
pass. Before that, behaves like
a drift space.

PASS INTERVAL long -1 Execute script only every Nth
pass following START PASS,
including START PASS. Oth-
erwise, behaves like a drift
space.

ON PASS long -1 Perform script action only on
this pass, overriding other pass
controls. Other than that, be-
haves like a drift space.

DIRECTORY STRING NULL Directory in which to place in-
put and output files. If blank,
the present working directory
is used.

ROOTNAME STRING NULL Rootname for use in naming
input and output files. %s may
be used to represent the run
rootname.

407

SCRIPT continued

An element that allows transforming the beam using an external script.
Parameter Name Units Type Default Description

INPUT EXTENSION STRING in Extension for the script input
file.

OUTPUT EXTENSION STRING out Extension for the script output
file.

KEEP FILES short 0 If nonzero, then script in-
put and output files are not
deleted after use. By default,
they are deleted.

DRIFT MATRIX short 0 If nonzero, then for non-
tracking calculations the el-
ement is treated as a drift
space.

USE PARTICLE ID short 1 If nonzero, then the output file
will supply particle IDs. Oth-
erwise, particles are renum-
bered.

NO NEW PARTICLES short 1 If nonzero, then no new parti-
cles will be added in the script
output file.

DETERMINE LOSSES FROM PID short 1 If nonzero and if
USE PARTICLE ID is
nonzero, then particleID
data from script output is
used to determine which
particles were lost.

SOFT FAILURE short 1 If output file does not exist or
can’t be read, consider all par-
ticles lost.

NP0 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np0

NP1 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np1

NP2 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np2

408

SCRIPT continued

An element that allows transforming the beam using an external script.
Parameter Name Units Type Default Description

NP3 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np3

NP4 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np4

NP5 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np5

NP6 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np6

NP7 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np7

NP8 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np8

NP9 double 0.0 User-defined numerical pa-
rameter for command substi-
tution for sequence %np9

SP0 STRING NULL User-defined string parameter
for command substitution for
sequence %sp0

SP1 STRING NULL User-defined string parameter
for command substitution for
sequence %sp1

SP2 STRING NULL User-defined string parameter
for command substitution for
sequence %sp2

SP3 STRING NULL User-defined string parameter
for command substitution for
sequence %sp3

SP4 STRING NULL User-defined string parameter
for command substitution for
sequence %sp4

409

SCRIPT continued

An element that allows transforming the beam using an external script.
Parameter Name Units Type Default Description

SP5 STRING NULL User-defined string parameter
for command substitution for
sequence %sp5

SP6 STRING NULL User-defined string parameter
for command substitution for
sequence %sp6

SP7 STRING NULL User-defined string parameter
for command substitution for
sequence %sp7

SP8 STRING NULL User-defined string parameter
for command substitution for
sequence %sp8

SP9 STRING NULL User-defined string parameter
for command substitution for
sequence %sp9

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element allows expanding elegant by using external scripts (or programs) as elements in
a beamline. Here are requirements for the script:

• It must be executable from the commandline.

• It must read the initial particle distribution from an SDDS file. This file will have the usual
columns that an elegant phase-space output file has, along with the parameter Charge giving
the beam charge in Coulombs. The file will contain a single data page.

• It must write the final particle distribution to an SDDS file. This file should have all of the
columns and parameters that appear in the initial distribution file. Additional columns and
parameters will be ignored, as will all pages but the first.

• The Charge parameter in the file is used to determine the total beam charge; the script must
ensure that this parameter is set correctly; when particles are lost or created, simply copying
or retaining the value from the input file will not be correct. Normally, the charge per particle
is constant in simulations. Hence, if elegant sees a change in charge per particle after the
SCRIPT element, it issues a warning.

The SCRIPT element works best if the script accepts commandline arguments. In this case, the
COMMAND parameter is used to provide a template for creating a command to run the script. The
COMMAND string may contain the following substitutable fields:

410

1. %i — Will be replaced by the name of the input file to the script. (elegant writes the initial
particle distribution to this file.)

2. %o — Will be replaced by the name of the output file from the script. (elegant expects the
script to write the final particle distribution to this file.)

3. %p — Will be replaced by the pass number, which starts from 0.

4. %np0, %np1, ..., %np9 — Will be replaced by the value of Numerical Parameter 0, 1, ..., 9.
This can be used to pass to the script values that are parameters of the element definition.
For example, if one wanted to vary parameters or add errors to the parameter, one would use
this facility.

5. %sp0, %sp1, ..., %sp9 — Will be replaced by the value of String Parameter 0, 1, ..., 9. This
can be used to pass to the script values that are parameters of the element definition.

In some cases, one may wish to keep the input file delivered to the SCRIPT as well as the output
file returned by it. This is facilitated by using the ROOTNAME parameter, which allows specifying the
rootname for these files, as well as the INPUT_EXTENSION and OUTPUT_EXTENSION parameters. The
ROOTNAME parameter may contain a simple string, but may also contain several sustainable fields:

• %s— The global rootname, which may be given by the rootname parameter in the run_setup
command.

• %p — The pass index.

• %ld — The occurence number of the element.

Here’s an example of a SCRIPT COMMAND:

myScript -input %i -output %o -accuracy %np0 -type %sp0

In this example, the script myScript takes four commandline arguments, giving the names of the
input and output files, an accuracy requirement, and a type specifier. By default, elegant will
choose unique, temporary filenames to use in communicating with the script. The actual command
when executed might be something like

myScript -input tmp391929.1 -output tmp391929.2 -accuracy 1.5e-6 -type scraper

where for this example I’ve assumed NP0=1.5e-6 and SP0=’’scraper’’.
If you have a program (e.g., a FORTRAN program) that does not accept commandline argu-

ments, you can easily wrap it in a Tcl/Tk simple script to handle this. Alternatively, you can
force elegant to use specified files for communicating with such a script. This is done using the
ROOTNAME, INPUT EXTENSION, and OUTPUT EXTENSION parameters. So if your program was crass
and it expected its input (output) in files crass.in (crass.out), then you’d use

S1: script,command=’’crass’’,rootname=’’crass’’,input_extension=’’in’’,&

output_extension=’’out’’

For purposes of computing concatenated transport matrices, Twiss parameters, response matri-
ces, etc., elegant will perform initial tracking through the SCRIPT element using an ensemble of 25
particles. If this is not desirable, then set the parameter DRIFT_MATRIX to a non-zero value. This
will force elegant to treat the element as a drift space for any calculations that involve transport

411

matrices. Examples of where one might want to use this feature would be a SCRIPT that involves
randomization (e.g., scattering), particle loss, or particle creation.

If non-zero, the RPN_PARAMETERS parameter directs elegant to load all numerical SDDS param-
eter values from the script output file into rpn variables, where they may be used for optimization.
This provides the user the ability to perform script-based analysis of particle distributions and then
optimize the results of that analysis. (Typically in this case the script does not actually transform
the particle coordinates, but simply copies them from the input file to the output file.) The names of
the variables are of the form ElementName#N.ParameterName, where N is the occurrence number
of the script element (usually 1 if there is only one instance).

412

SEXT

10.96 SEXT—A sextupole implemented as a matrix, up to 3rd order. Use
KSEXT for symplectic tracking.

A sextupole implemented as a matrix, up to 3rd order. Use KSEXT for symplectic tracking.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

K2 1/M3 double 0.0 geometric strength

K1 1/M2 double 0.0 geometric quadrupole strength
error. See notes below!

J1 1/M2 double 0.0 geometric skew quadrupole
strength error. See notes be-
low!

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FSE double 0.0 fractional strength error

FFRINGE double 0.0 Length occupied by linear
fringe regions as fraction hard-
edge length L.

ORDER short 0 matrix order

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a sextupole using a matrix, up to third order.
The K1 and J1 parameters allow introducing normal and skew quadrupole error terms. The

matrix expressions assume that these are weak effects and high accuracy should not be expected if
this is not true. If K1 is significant, then use of the KQUSE element is preferred.

413

SHRFDF

10.97 SHRFDF—Simulation through space harmonics of zero length deflecting
cavity.

Simulation through space harmonics of zero length deflecting cavity.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

FACTOR double 1 A factor by which to multiply
all components.

TILT RAD double 0.0 rotation about longitudinal
axis

PERIOD LENGTH M double 0.0 cavity period length, or cell
length

PERIOD PHASE RAD double 0.0 cavity period phase advance,
or so-called working mode

V0 V double 0.0 effective voltage of space har-
monic n=0

V1 V double 0.0 effective voltage of space har-
monic n=1

V2 V double 0.0 effective voltage of space har-
monic n=2

V3 V double 0.0 effective voltage of space har-
monic n=3

V4 V double 0.0 effective voltage of space har-
monic n=4

V5 V double 0.0 effective voltage of space har-
monic n=5

V6 V double 0.0 effective voltage of space har-
monic n=6

V7 V double 0.0 effective voltage of space har-
monic n=7

V8 V double 0.0 effective voltage of space har-
monic n=8

V9 V double 0.0 effective voltage of space har-
monic n=9

PHASE0 HZ double 0.0 Phase of space harmonic n=0

PHASE1 HZ double 0.0 Phase of space harmonic n=1

PHASE2 HZ double 0.0 Phase of space harmonic n=2

PHASE3 HZ double 0.0 Phase of space harmonic n=3

PHASE4 HZ double 0.0 Phase of space harmonic n=4

PHASE5 HZ double 0.0 Phase of space harmonic n=5

PHASE6 HZ double 0.0 Phase of space harmonic n=6

PHASE7 HZ double 0.0 Phase of space harmonic n=7

414

SHRFDF continued

Simulation through space harmonics of zero length deflecting cavity.
Parameter Name Units Type Default Description

PHASE8 HZ double 0.0 Phase of space harmonic n=8

PHASE9 HZ double 0.0 Phase of space harmonic n=9

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates an rf deflector with specified space harmonic parameters (voltage, phase).
The thin kicks from the fundamental deflecting mode are the same as for the element RFDF. The
thin kicks from the space harmonics (n ≥ 1) are [55]

∆Px = −∂(H−H0)
∂x

=
∞
∑

n=1
−qV̄n · sin(knz + φn) · (12αn + 1

16α
3
n · (3x2 + y2))

(150)

∆Pz = −∂(H−H0)
∂z

=
∞
∑

n=1
−qV̄n · kn · cos(knz + φn) · (12αn · x+ 1

16α
3
n · (x2 + y2) · x)

(151)

The wave numbers kn and αn are listed below.

kn =
ϕ0 + 2πn

d
(152)

α2
n + k2n = k20 (153)

where kn is wave number of nth space harmonic, n an integer number, ϕ0 the phase advance per
cavity period, d the cavity period length, αn the wave number in the radial direction, m wave
number (per 2π) in the angular direction.

415

SLICE

10.98 SLICE—Performs slice-by-slice analysis of the beam for output to a file.

Performs slice-by-slice analysis of the beam for output to a file.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

N SLICES long 10 number of slices

START PID long -1 starting particleID for parti-
cles to dump

END PID long -1 ending particleID for particles
to dump

INTERVAL long 1 interval for data output (in
turns)

START PASS long 0 pass on which to start

END PASS long -1 pass on which to end (inclu-
sive). Ignored if negative.

FILENAME STRING output filename, possibly in-
complete (see below)

LABEL STRING output label

INDEX OFFSET long 0 Offset for file indices for se-
quential file naming.

REFERENCE FREQUENCY double -1 If non-zero, the indicated fre-
quency is used to define the
bucket center for purposes of
computing time offsets.

DISABLE short 0 If nonzero, no output will be
generated.

USE DISCONNECT short 0 If nonzero, files are discon-
nected between each write op-
eration. May be useful for par-
allel operation. Ignored other-
wise.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

NB: This element has very poor parallel efficiency. Hence, the START_PASS, END_PASS, and
INTERVAL options should be used to limit the frequency of computations to the minimum needed.

416

SOLE

10.99 SOLE—A solenoid implemented as a matrix, up to 2nd order.

A solenoid implemented as a matrix, up to 2nd order.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

KS RAD/M double 0.0 geometric strength, -
Bs/(B*Rho)

B T double 0.0 field strength (used if KS is
zero)

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

ORDER short 0 matrix order

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

417

SPEEDBUMP

10.100 SPEEDBUMP—Simulates a semi-circular protuberance from one or
both walls of the chamber.

Simulates a semi-circular protuberance from one or both walls of the chamber.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 insertion length

CHORD M double 0.0 z length of speed bump

DZCENTER M double 0.0 z center displacement of speed
bump relative to middle of ob-
ject

HEIGHT M double 0.0 height above the surrounding
chamber

POSITION M double 0.0 position of peak relative to
ideal trajectory

DX M double 0.0 horizontal misalignment

DY M double 0.0 vertical misalignment

INSERT FROM STRING NULL direction from which inserted
(x, +x, -x, y, +y, -y)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a commonplace type of aperture restriction, consisting of a bump on
one or both sides of a chamber. The parameters of the speedbump are illustrated in Fig. 4 It may
be useful to know that the radius R of the cylinder from which the speedbump is made is

R =
C2 + 4h2

8h
, (154)

where C is the chord length and h is the bump height. Solving for h, we have

h = R−

√

R2 −
(

C

2

)2

. (155)

418

Figure 4: Illustration of the parameters used in specifying a speedbump.

419

SREFFECTS

10.101 SREFFECTS—Lumped simulation of synchrotron radiation effects (damp-
ing and quantum excitation) for rings.

Lumped simulation of synchrotron radiation effects (damping and quantum excitation) for rings.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

JX double 1 x damping partition number

JY double 1 y damping partition number

JDELTA double 2 momentum damping partition
number

EXREF m double 0.0 reference equilibrium x emit-
tance

EYREF m double 0.0 reference equilibrium y emit-
tance

SDELTAREF double 0.0 reference equilibrium frac-
tional momentum spread

DDELTAREF double 0.0 reference fractional momen-
tum change per turn due to SR
(negative value)

PREF mec double 0.0 reference momentum (to
which other reference values
pertain)

COUPLING double 0.0 x-y coupling

FRACTION double 1 fraction of implied SR effect to
simulate with each instance

DAMPING long 1 include damping, less rf ef-
fects?

QEXCITATION long 1 include quantum excitation?

LOSSES long 1 include average losses?

CUTOFF double 100 cutoff (in sigmas) for gaussian
random numbers

INCLUDE OFFSETS long 1 include orbit offsets in track-
ing (see below)?

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is intended for storage ring modeling only and provides a fast alternative to
element-by-element modeling of synchrotron radiation. It should be used with care because the

420

results will not necessarily be self-consistent. This is particularly an issue when there is dispersion
at the location of the SREFFECTS element.

There are several types of storage ring simulation in which one may want to use this element:

• Simulation of instabilities or other dynamics where radiation damping or quantum excitation
is important.

• Simulation of dynamics with an rf cavity when the synchronous phase is significantly different
from 180 degrees, so that average radiation losses must be included.

• Computation of dynamic and momentum aperture in the presence of radiation damping.

The major parameters (JX, JY, EXREF, SDELTAREF, DDELTAREF, and PREF) can be supplied explic-
itly by the user, or filled in by elegant if the twiss_output command is given with radiation_integrals=1.

In explicit initialization, the user supplies the quantities EXREF, EYREF, SDELTAREF, DDELTAREF,
and PREF. These are, respectively, the reference values for the x-plane emittance, y-plane emittance,
fractional momentum spread, energy loss per turn, and momentum. The first four values pertain
to the reference momentum. JX, JY, and JDELTA may also be given, although the defaults work for
typical lattices.

In automatic initialization, the user turns on the radiation integral feature in twiss output,
causing elegant to automatically compute the above quantities. This will occur only if PREF=0.
The COUPLING parameter can be used to change the partitioning of quantum excitation between
the horizontal and vertical planes. Because the radiation integrals computation in twiss_output

pertains to the horizontal plane only, the user must supply either EYREF or COUPLING if non-zero
vertical emittance is desired.

The user may elect to turn off some aspects of the synchrotron radiation model. These should
be changed from the default values with care!

• DAMPING — Default is 1. If set to 0, then no radiation damping effects will be included. More
precisely, it is equivalent to setting JX=JY=JDELTA=1. Damping still occurs at any rf cavities
(since elegant works in trace space).

• QEXCITATION — Default is 1. If set to 0, then no quantum excitation effects are included,
which is to say that all particles will experience the same perturbation.

• LOSSES — Default is 1. If set to 0, no average energy losses are included.

There are a number of caveats that must be observed when using this element.

1. If there is dispersion at the location of the SREFFECTS element, the closed orbit will change
because of the average momentum change, but it will disagree with tracking results. The
reason is that in tracking SREFFECTS must displace the beam to the new equilibrium orbit,
because otherwise there will be additional betatron motion excited and the wrong equilibrium
emittance will be obtained. (Since the SREFFECTS element is already adding the betatron
motion excitation for the entire ring, elegant is forced to offset each particle by ∆δ~η to
suppress any additional excitation.)

This issue can be resolved by placing the SREFFECTS element next to the rf cavity and setting
INCLUDE_OFFSETS=0. Since the average momentum change is zero from the two elements, no
additional betatron motion will be generated. Optionally, one can also use many SREFFECTS

elements at equivalent locations in the lattice, which will decrease the magnitude of the effect.

421

2. When used for dynamic aperture and momentum aperture determination, one should set
QEXCITATION=0. Putting the rf cavity (if any) right next to the SREFFECTS element is a good
idea to avoid spurious excitation of betatron motion.

3. Nothing prevents including this element in a lattice when doing frequency map analysis,
although it probably doesn’t make any sense. Only the average energy loss per turn will be
included. Again, putting an rf cavity right after SREFFECTS is a good idea.

4. In versions 19.0 and later, elegant includes the effect of SREFFECTS on the closed orbit.
This presents a dilemna when automatic initialization is used, because in order to perform
automatic initialization, elegant has to compute the optics functions. However, it must
determine the closed orbit to compute the optics functions. The solution to this is for
the user to pre-compute the twiss parameters and radiation integrals using twiss_output

with output_at_each_step=0. The user is free to subsequently give twiss_output with
output_at_each_step=1 to obtain the results on the closed orbit.

5. Computation of Twiss parameters does not fully include the effects of synchrotron radiation
losses when these are imposed using SREFFECTS elements. If PREF=0 (automatic initialization),
these effects are completely missing. If PREF is non-zero, then elegant will use the DDELTAREF
parameter to compute the energy offset from the element, and thus its effect on the beam
trajectory.

422

STRAY

10.102 STRAY—A stray field element with local and global components. Global
components are defined relative to the initial beamline direction.

A stray field element with local and global components. Global components are defined relative to
the initial beamline direction.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

LBX T double 0.0 local Bx

LBY T double 0.0 local By

GBX T double 0.0 global Bx

GBY T double 0.0 global By

GBZ T double 0.0 global Bz

ORDER long 0 matrix order

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates stray fields. These fields are considered perturbations, in that they
change the trajectory (or orbit), but not the floor coordinates. Local stray fields (LBX and LBY) are
referenced to the local coordinate system. Global stray fields (GBX, GBY, GBZ) are referenced to the
global coordinate system, which coincides with the local coordinate system only at the start of the
beamline (unless there is no bending, in which case the two systems are identical).

423

TAPERAPC

10.103 TAPERAPC—A tapered aperture that is a section of a circular cylin-
der.

A tapered aperture that is a section of a circular cylinder.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

RSTART M double 0.0 radius at the start

REND M double 0.0 radius at the end

DX M double 0.0 misalignment

DY M double 0.0 misalignment

STICKY NULL short 0 final aperture holds down-
stream until next TAPER-
APC, TAPERAPE, TAPER-
APR, or MAXAMP

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

424

TAPERAPE

10.104 TAPERAPE—A tapered elliptical aperture.

A tapered elliptical aperture.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

ASTART M double 0.0 horizontal semi-axis at the
start

AEND M double 0.0 horizontal semi-axis at the end

BSTART M double 0.0 vertical semi-axis at the start

BEND M double 0.0 vertical semi-axis at the end

DX M double 0.0 misalignment

DY M double 0.0 misalignment

TILT RAD double 0.0 misalignment

RESOLUTION M double 1e-06 z resolution of finding intersec-
tion

XEXPONENT NULL short 2 super-elliptical exponent (even
number)

YEXPONENT NULL short 2 super-elliptical exponent (even
number)

STICKY NULL short 0 final aperture holds down-
stream until next TAPER-
APC, TAPERAPE, TAPER-
APR, or MAXAMP

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

425

TAPERAPR

10.105 TAPERAPR—A tapered rectangular aperture.

A tapered rectangular aperture.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

XSTART M double 0.0 horizontal half-aperture at the
start

XEND M double 0.0 horizontal half-aperture at the
end

YSTART M double 0.0 vertical half-aperture at the
start

YEND M double 0.0 vertical half-aperture at the
end

DX M double 0.0 misalignment

DY M double 0.0 misalignment

TILT RAD double 0.0 misalignment

STICKY NULL short 0 final aperture holds down-
stream until next TAPER-
APC, TAPERAPE, TAPER-
APR, or MAXAMP

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

426

TFBDRIVER

10.106 TFBDRIVER—Driver for a turn-by-turn feedback loop

Driver for a turn-by-turn feedback loop
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

ID STRING NULL System identifier

STRENGTH double 0.0 Strength factor

KICK LIMIT double 0.0 Limit on applied kick, nomi-
nally in radians.

FREQUENCY Hz double 0.0 Resonant frequency of the un-
loaded kicker cavity.

DRIVE FREQUENCY Hz double 0.0 Drive frequency. If zero, de-
faults to resonant frequency of
the loaded cavity.

CLOCK FREQUENCY Hz double 0.0 Clock frequency used for tim-
ing of the changes to genera-
tor current. Typically the rf
or bunch frequency is used.

CLOCK OFFSET s double 0.0 Offset of the generator current
change relative to clock tick.
Clock tick is nominally aligned
to the bunch center.

PHASE Deg double 0.0 Phase of the applied voltage
relative to the bunch center,
with 0 being on-crest.x2

RAOVERQ Ohm double 0.0 Shunt impedance,
Ra/Q=V2̂/(P*Q).

QLOADED double 0.0 Loaded Q of the cavity.

OUTPUT FILE STRING NULL File for logging filter output
and driver output

DELAY long 0 Delay (in turns)

A0 double 1 Filter coefficient

A1 double 0.0 Filter coefficient

A2 double 0.0 Filter coefficient

A3 double 0.0 Filter coefficient

A4 double 0.0 Filter coefficient

A5 double 0.0 Filter coefficient

A6 double 0.0 Filter coefficient

A7 double 0.0 Filter coefficient

427

TFBDRIVER continued

Driver for a turn-by-turn feedback loop
Parameter Name Units Type Default Description

A8 double 0.0 Filter coefficient

A9 double 0.0 Filter coefficient

A10 double 0.0 Filter coefficient

A11 double 0.0 Filter coefficient

A12 double 0.0 Filter coefficient

A13 double 0.0 Filter coefficient

A14 double 0.0 Filter coefficient

A15 double 0.0 Filter coefficient

A16 double 0.0 Filter coefficient

A17 double 0.0 Filter coefficient

A18 double 0.0 Filter coefficient

A19 double 0.0 Filter coefficient

A20 double 0.0 Filter coefficient

A21 double 0.0 Filter coefficient

A22 double 0.0 Filter coefficient

A23 double 0.0 Filter coefficient

A24 double 0.0 Filter coefficient

A25 double 0.0 Filter coefficient

A26 double 0.0 Filter coefficient

A27 double 0.0 Filter coefficient

A28 double 0.0 Filter coefficient

A29 double 0.0 Filter coefficient

UPDATE INTERVAL long 0 Interval in units of pickup
update interval for sampling
pickup data and updating fil-
ter output.

OUTPUT INTERVAL long 1024 Number of samples to buffer
between writing output file up-
dates.

START PASS long -1 If positive, first pass on which
to drive beam.

END PASS long -1 If positive, last pass on which
to drive beam.

LONGITUDINAL short 0 If non-zero, kick is in the longi-
tuidinal plane. KICK LIMIT
is in fractional momentum de-
viation.

428

TFBDRIVER continued

Driver for a turn-by-turn feedback loop
Parameter Name Units Type Default Description

BUNCHED BEAM MODE short 1 If non-zero, run in bunched
beam mode.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is used together with the TFBPICKUP element to simulate a digital turn-by-turn
feedback system. Each TFBDRIVER element must have a unique identification string assigned to it
using the ID parameter. The same identifier must be used on a TFBPICKUP element. This is the
pickup from which the driver gets its signal. Each pickup may feed more than one driver, but a
driver can use only one pickup.

A 30-term FIR filter can be defined using the A0 through A29 parameters. The output of the
filter is simply

∑29
i=0 aiPi, where Pi is the pickup filter output from i ∗U turns ago, where U is the

UPDATE_INTERVAL value specified for the pickup. The output of the filter is optionally delayed by
the number of update intervals given by the DELAY parameter.

To some extent, the DELAY is redundant. For example, the filter a0 = 0, a1 = 1 with a delay of
0 is equivalent to a0 = 1, a1 = 0 with a delay of 1. However, for long delays or delays combined
with many-term filters, the DELAY feature must be used.

The output of the filter is multiplied by the STRENGTH parameter to get the kick to apply to the
beam. The KICK LIMIT parameter provides a very basic way to simulate saturation of the kicker
output.

The plane that the TFBDRIVER kicks is determined by the PLANE parameter on the corresponding
TFBPICKUP element, and additionally by the LONGITUDINAL parameter, as described in Table 3

TFBPICKUP TFBDRIVER coordinate note
PLANE LONGITUDINAL kicked

x 0 x′

x 1 δ pickup should have ηx 6= 0
y 0 y′
y 1 δ pickup should have ηy 6= 0
delta 0 - invalid
delta 1 δ

Table 3: Correspondence between PLANE parameter of TFBPICKUP, LONGITUDINAL parameter of
TFBDRIVER, and action of feedback loop.

Note: The OUTPUT_FILE will produce a file with missing data at the end of the buffer if the
OUTPUT_INTERVAL parameter is not a divisor of the number of passes.

The FREQUENCY and PHASE parameters may be used to specify the resonant frequency of the
driving cavity and its phase relative to the center of the bunch. If the frequency is not specified,

429

the kicker is assumed to kick all particles in a bunch by the same amount.
For longitudinal feedback only, a more sophicated approach is available using a circuit model

developed by T. Berenc (APS) may be employed to simulate driving the cavity resonance. To invoke
this, the user must provide the loaded Q of the cavity using the QLOADED parameter, the (Ra/Q)
using RAOVERQ, and the resonant frequency of the unloaded cavity using FREQUENCY. Optionally,
the drive frequency may be specified using DRIVE_FREQUENCY; it defaults to the unloaded resonant
frequency.

Typically one should choose the resonant frequency to be (n ± 1
4)fb, where fb is the bunch

frequency and n is an integer. This will ensure that the kick to one bunch from the residual voltage
from the previous bunch (both beam-loading and generator terms), is approximately minimized.
Checking the ResidualVoltage column in the output file to confirm this is advised.

In addition to the resonant and drive frequencies, one must specify a clock frequency with
CLOCK_FREQUENCY and a clock offset with CLOCK_OFFSET. The clock used used to determine when
the drive current changes, which happens at regular intervals. The clock offset is used to ensure
that the change does not occur during passage of the bunch. If the clock offset is too small and the
bunch length too long, this will happen and results in an error. The phase shift that results from
the clock offset is automatically compensated.

Beam loading is not included in the model, but can be superimposed by inserting an RFMODE

element with matching parameters.
See Section 7.2.14 of Handbook of Accelerator Physics and Engineering (Chao and Tigner, eds.)

for a discussion of feedback systems.

430

TFBPICKUP

10.107 TFBPICKUP—Pickup for a turn-by-turn feedback loop

Pickup for a turn-by-turn feedback loop
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

ID STRING NULL System identifier

PLANE STRING x ”x”, ”y”, ”delta”, or ”phase”

RMS NOISE M double 0.0 RMS noise to add to position
readings.

A0 double 0.0 Filter coefficient

A1 double 0.0 Filter coefficient

A2 double 0.0 Filter coefficient

A3 double 0.0 Filter coefficient

A4 double 0.0 Filter coefficient

A5 double 0.0 Filter coefficient

A6 double 0.0 Filter coefficient

A7 double 0.0 Filter coefficient

A8 double 0.0 Filter coefficient

A9 double 0.0 Filter coefficient

A10 double 0.0 Filter coefficient

A11 double 0.0 Filter coefficient

A12 double 0.0 Filter coefficient

A13 double 0.0 Filter coefficient

A14 double 0.0 Filter coefficient

A15 double 0.0 Filter coefficient

A16 double 0.0 Filter coefficient

A17 double 0.0 Filter coefficient

A18 double 0.0 Filter coefficient

A19 double 0.0 Filter coefficient

A20 double 0.0 Filter coefficient

A21 double 0.0 Filter coefficient

A22 double 0.0 Filter coefficient

A23 double 0.0 Filter coefficient

A24 double 0.0 Filter coefficient

A25 double 0.0 Filter coefficient

A26 double 0.0 Filter coefficient

A27 double 0.0 Filter coefficient

A28 double 0.0 Filter coefficient

A29 double 0.0 Filter coefficient

UPDATE INTERVAL long 0 Interval in turns for sampling
data and updating filter out-
put.

431

TFBPICKUP continued

Pickup for a turn-by-turn feedback loop
Parameter Name Units Type Default Description

START PASS long -1 If positive, first pass on which
to perform computations.

END PASS long -1 If positive, last pass on which
to perform computations.

REFERENCE FREQUENCY double 0.0 Reference frequency for com-
puting phase offsets.

DX M double 0.0 Horizontal offset (subtracted
from pickup signal).

DY M double 0.0 Vertical offset (subtracted
from pickup signal)

BUNCHED BEAM MODE short 1 If non-zero, run in bunched
beam mode.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element is used together with the TFBDRIVER element to simulate a digital turn-by-turn
feedback system. Each TFBPICKUP element must have a unique identification string assigned to it
using the ID parameter. This is used to identify which drivers get signals from the pickup.

A 30-term FIR filter can be defined using the A0 through A29 parameters. The input to the
filter is the turn-by-turn beam centroid at the pickup location. The output of the filter is simply
∑29

i=0 aiCi, where Ci is the centroid from i ∗ U turns ago, where U is the value specified by the
UPDATE_INTERVAL parameter. Note that

∑29
i=0 ai should generally be zero. Otherwise, the system

will attempt to correct the DC orbit. The output of the filter is the input to the driver element(s).
The PLANE parameter can take four values: “x”, “y”, “delta”, and “phase”, specifying what

centroid property of the beam is measured by the pickup. The “delta”-mode pickup is nonphysical,
but could have applications to simulations where is not convenient to put a pickup in a high-
dispersion area.

See Section 7.2.14 of Handbook of Accelerator Physics and Engineering (Chao and Tigner, eds.)
for a discussion of feedback systems.

432

TMCF

10.108 TMCF—A numerically-integrated accelerating TMRF cavity with spatially-
constant fields.

A numerically-integrated accelerating TM RF cavity with spatially-constant fields.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

FREQUENCY HZ double 2856000000 frequency

PHASE S double 0.0 phase

TIME OFFSET S double 0.0 time offset (adds to phase)

RADIAL OFFSET M double 1 not recommended

TILT RAD double 0.0 rotation about longitudinal
axis

ER V double 0.0 radial electric field

BPHI T double 0.0 azimuthal magnetic field

EZ V double 0.0 longitudinal electric field

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

N STEPS long 100 number of steps (for nonadap-
tive integration)

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

433

TRCOUNT

10.109 TRCOUNT—An element that defines the point from which transmis-
sion calculations are made.

An element that defines the point from which transmission calculations are made.
Parallel capable? : no
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

DUMMY long 0

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

434

TRFMODE

10.110 TRFMODE—A simulation of a beam-driven TM dipole mode of an RF
cavity.

A simulation of a beam-driven TM dipole mode of an RF cavity.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

RA Ohm/m double 0.0 shunt impedance, Ra=V2̂/P

RS Ohm/m double 0.0 shunt impedance (Rs=Ra/2)

Q double 0.0 cavity Q

FREQ Hz double 0.0 frequency

CHARGE C double 0.0 beam charge (or use CHARGE
element)

BETA double 0.0 normalized load impedance

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 20 number of bins for current his-
togram

INTERPOLATE long 0 if non-zero, interpolate voltage
within bins

PLANE STRING both x, y, or both

SAMPLE INTERVAL long 1 passes between output to
RECORD file

PER PARTICLE OUTPUT long 0 If non-zero, then in BINLESS
mode, provides per-particle
output of RECORD data.

RECORD STRING NULL output file for cavity data

SINGLE PASS long 0 if nonzero, don’t accumulate
field from pass to pass

RIGID UNTIL PASS long 0 don’t affect the beam until this
pass

DX M double 0.0 misalignment

DY M double 0.0 misalignment

XFACTOR double 1 factor by which to multiply
shunt impedances

YFACTOR double 1 factor by which to multiply
shunt impedances

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the
impedance to full strength.

BINLESS long 0 If nonzero, use algorithm
that doesn’t requiring binning.
Best for few particles, widely
spaced.

435

TRFMODE continued

A simulation of a beam-driven TM dipole mode of an RF cavity.
Parameter Name Units Type Default Description

RESET FOR EACH STEP long 1 If nonzero, voltage and phase
are reset for each simulation
step.

LONG RANGE ONLY long 0 If nonzero, induced voltage
from present turn does not af-
fect bunch. Short range wake
should be included via TR-
WAKE or ZTRANSVERSE
element.

N CAVITIES long 1 effect is multiplied by this
number, simulating N identi-
cal cavities

BUNCHED BEAM MODE long 1 If non-zero, then do calcula-
tions bunch-by-bunch.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a beam-driven dipole mode cavity using the fundamental theorem of
beam loading and phasor rotation.

Normally, the field dumped in the cavity by one particle affects trailing particles in the same
turn. However, if one is also using a TRWAKE or ZTRANSVSE element to simulate the short-range
wake of the cavity, this would be double-counting. In that case, one can use LONG_RANGE_ONLY=1

to suppress the same-turn effects of the RFMODE element.

436

TRWAKE

10.111 TRWAKE—Transverse wake specified as a function of time lag behind
the particle.

Transverse wake specified as a function of time lag behind the particle.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

INPUTFILE STRING NULL name of file giving Green func-
tions

TCOLUMN STRING NULL column in INPUTFILE con-
taining time data

WXCOLUMN STRING NULL column in INPUTFILE con-
taining x Green function

WYCOLUMN STRING NULL column in INPUTFILE con-
taining y Green function

CHARGE C double 0.0 beam charge (or use CHARGE
element)

FACTOR double 1 factor by which to multiply
both wakes

XFACTOR double 1 factor by which to multiply x
wake

YFACTOR double 1 factor by which to multiply y
wake

N BINS long 0 number of bins for current his-
togram

INTERPOLATE long 0 interpolate wake?

SMOOTHING long 0 Use Savitzky-Golay filter to
smooth current histogram?

SG HALFWIDTH long 4 Savitzky-Golay filter half-
width for smoothing

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

DX M double 0.0 misalignment

DY M double 0.0 misalignment

TILT RAD double 0.0 rotation about longitudinal
axis

X DRIVE EXPONENT long 1 Exponent applied to x coordi-
nates of drive particles

Y DRIVE EXPONENT long 1 Exponent applied to y coordi-
nates of drive particles

X PROBE EXPONENT long 0 Exponent applied to x coordi-
nates of probe particles

Y PROBE EXPONENT long 0 Exponent applied to y coordi-
nates of probe particles

437

TRWAKE continued

Transverse wake specified as a function of time lag behind the particle.
Parameter Name Units Type Default Description

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the wake
to full strength.

BUNCHED BEAM MODE long 1 If non-zero, then do calcula-
tions bunch-by-bunch.

ACAUSAL ALLOWED long 0 If non-zero, then an acausal
wake is allowed.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

The input file for this element gives the transverse-wake Green functions, Wx(t) and Wy(t),
versus time behind the particle. The units of the wakes are V/C/m, so this element simulates the
integrated wake of some structure (e.g., a cell or series of cells). If you have, for example, the wake
for a cell and you need the wake for N cells, then you may use the FACTOR parameter to make the
appropriate multiplication. The values of the time coordinate should begin at 0 and be equi-spaced,
and be expressed in seconds. A positive value of time represents the distance behind the exciting
particle. Time values must be equally spaced.

The sign convention for Wq (q being x or y) is as follows: a particle with q > 0 will impart a
positive kick (∆q′ > 0) to a trailing particle following t seconds behind ifWq(t) > 0. A physical wake
function should be zero at t = 0 and also be initially positive as t increases from 0. Causality requires
that Wq(t) = 0 for t < 0. Acasual wakes are supported, provided the user sets ACAUSAL_ALLOWED=0.
The data file must contain a value of W (t) at t = 0, and should have equal spans of time to the
negative and positive side of t = 0.

Use of the CHARGE parameter on the TRWAKE element is disparaged. It is preferred to use the
CHARGE element as part of your beamline to define the charge.

Setting the N BINS paramater to 0 is recommended. This results in auto-scaling of the number
of bins to accomodate the beam. The bin size is fixed by the spacing of the time points in the wake.

The default degree of smoothing (SG HALFWIDTH=4) may be excessive. It is suggested that users
vary this parameter to verify that results are reliable if smoothing is employed (SMOOTHING=1).

The XFACTOR and YFACTOR parameters can be used to adjust the strength of the wakes if the
location at which you place the TRWAKE element has different beta functions than the location at
which the object that causes the wake actually resides.

The X DRIVE EXPONENT and Y DRIVE EXPONENT parameters can be used to change the depen-
dence of the wake on the x and y coordinates, respectively, of the particles. Normally, these have
the value 1, which corresponds to an ordinary dipole wake in a symmetric chamber.

If you have an asymmetric chamber, then you will have a transverse wake kick even if the
beam is centered. (Of course, you’ll need a 3-D wake code like GdfidL or MAFIA to compute
this wake.) This part of the transverse wake is modeled by setting X DRIVE EXPONENT=0 and

438

Y DRIVE EXPONENT=0. It will result in an orbit distortion, but conceivably could have other effects,
such as emittance dilution. In this case, the units for the x and y wake must be V/C. A negative
value of the wake corresponds to a kick toward negative x (or y).

In addition, a quadrupole wake can be modeled by setting X DRIVE EXPONENT=0, Y DRIVE EXPONENT=0,
X PROBE EXPONENT=1, and Y PROBE EXPONENT=1. The kick to a particle now depends on it’s dis-
placement, not on the displacement of the leading particles. In this case, the units for the wakes
must be V/C/m.

Bunched-mode application of the short-range wake is possible using specially-prepared input
beams. See Section 6 for details. The use of bunched mode for any particular TRWAKE element is
controlled using the BUNCHED_BEAM_MODE parameter

439

TSCATTER

10.112 TSCATTER—An element to simulate Touschek scattering.

An element to simulate Touschek scattering.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

DUMMY long 0

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

440

TUBEND

10.113 TUBEND—A special rectangular bend element for top-up backtrack-
ing.

A special rectangular bend element for top-up backtracking.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 arc length

ANGLE RAD double 0.0 bend angle

FSE double 0.0 fractional strength error

OFFSET double 0.0 horizontal offset of magnet
center from arc center

MAGNET WIDTH double 0.0 horizontal width of the magnet
pole

MAGNET ANGLE double 0.0 angle that the magnet was de-
signed for

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

441

TWISS

10.114 TWISS—Sets Twiss parameter values.

Sets Twiss parameter values.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

BETAX M double 1 horizontal beta function

ALPHAX double 0.0 horizontal alpha function

ETAX M double 0.0 horizontal eta function

ETAXP double 0.0 slope of horizontal eta function

BETAY M double 1 vertical beta function

ALPHAY double 0.0 vertical alpha function

ETAY M double 0.0 vertical eta function

ETAYP double 0.0 slope of vertical eta function

FROM BEAM short 0 compute transformation from
tracked beam properties in-
stead of Twiss parameters?

FROM 0VALUES short 0 if non-zero, transformation is
from the ”0” values provided
in the element definition

COMPUTE ONCE short 0 compute transformation only
for first beam or lattice func-
tions?

APPLY ONCE short 1 apply correction only on first
pass through for each beam?

VERBOSE short 0 if non-zero, print extra infor-
mation about transformations

DISABLE short 0 if non-zero, element is ignored

BETAX0 M double 1 initial horizontal beta function
(if FROM 0VALUES nonzero)

ALPHAX0 double 0.0 initial horizontal alpha func-
tion (if FROM 0VALUES
nonzero)

ETAX0 M double 0.0 initial horizontal eta function
(if FROM 0VALUES nonzero)

442

TWISS continued

Sets Twiss parameter values.
Parameter Name Units Type Default Description

ETAXP0 double 0.0 initial slope of horizontal eta
function (if FROM 0VALUES
nonzero)

BETAY0 M double 1 initial vertical beta function (if
FROM 0VALUES nonzero)

ALPHAY0 double 0.0 initial vertical alpha function
(if FROM 0VALUES nonzero)

ETAY0 M double 0.0 initial vertical eta function (if
FROM 0VALUES nonzero)

ETAYP0 double 0.0 initial slope of vertical eta
function (if FROM 0VALUES
nonzero)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This elements allows transformation of the twiss parameters of a beam with a first-order matrix.
The matrix is computed in various ways based on initial and final twiss parameters. Depending on
how you set it up, the final twiss parameters for your beam may not be the twiss parameters you
specify.

The twiss parameter values BETAX, BETAY, etc. specified in the element definition specify the
target values of the transformation. To completely specify the transformation, one must know the
initial values as well.

Lattice-Function-Based Transformation
If FROM_BEAM is zero, which is the default, then the initial values are taken from the incoming

lattice functions computed by twiss_output. This provides a way to transform the lattice functions
between two parts of a transport line without designing intervening optics. A beam that is matched
at the beginning of the transport line will remain matched. A beam that is mismatched at the
beginning of the transport line will not be matched after the TWISS element.

By default, each time the twiss parameters are recomputed, the transformation is updated to
maintain the desired lattice functions at the exit of the TWISS element. Setting COMPUTE_ONCE to
a non-zero value specifies that elegant should compute the transformation matrix only once, i.e.,
for the first set of computed lattice functions.

By default, the transformation is applied to the beam only the first time it passes the element.
Setting APPLY_ONCE to a zero will result in application of the transformation at each pass.

Beam-Ellipse-Based Transformation
If FROM_BEAM is non-zero, the the initial values for the transformation are computed from a beam.

This provides a way to transform the beam ellipse to the desired twiss parameters irrespective of
the lattice. The results from twiss_output will not necessarily be matched downstream of this

443

element. Only if the beam ellipse and lattice ellipse are the same will this occur.
By default, each time a new beam is generated, the transformation will be updated to maintain

the desired beam ellipse at the exit of the TWISS element. Setting COMPUTE_ONCE to a non-zero
value specifies that elegant should compute the transformation matrix only once, i.e., for the first
beam it sees.

By default, the transformation is applied to the beam only the first time it passes the element.
Setting APPLY_ONCE to a zero will result in application of the transformation at each pass. This
would make sense, for example, if the TWISS element was filling in for a section of a ring. It wouldn’t
make sense if the TWISS element was being used to match the beam from a transport line to a ring.

444

TWLA

10.115 TWLA—A numerically-integrated first-space-harmonic traveling-wave
linear accelerator.

A numerically-integrated first-space-harmonic traveling-wave linear accelerator.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

FREQUENCY HZ double 2856000000 frequency

PHASE RAD double 0.0 phase

TIME OFFSET S double 0.0 time offset (adds to phase)

EZ V/M double 0.0 electric field

B SOLENOID T double 0.0 solenoid field

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

BETA WAVE double 1 (phase velocity)/c

ALPHA 1/M double 0.0 field attenuation factor

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

N STEPS long 100 number of steps (for nonadap-
tive integration)

FOCUSSING long 1 include focusing effects?

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

CHANGE P0 long 0 does element change central
momentum?

SUM BN2 double 0.0 sum of squares of amplitudes
of n!=0 space harmonics

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

445

TWMTA

10.116 TWMTA—A numerically-integrated traveling-wave muffin-tin acceler-
ator.

A numerically-integrated traveling-wave muffin-tin accelerator.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

FREQUENCY HZ double 2856000000 frequency

PHASE RAD double 0.0 phase

EZ V/M double 0.0 electric field

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

KX 1/M double 0.0 horizontal wave number

BETA WAVE double 1 (phase velocity)/c

BSOL double 0.0 solenoid field

ALPHA 1/M double 0.0 field attenuation factor

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

N STEPS long 100 number of kicks

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

446

TWPL

10.117 TWPL—A numerically-integrated traveling-wave stripline deflector.

A numerically-integrated traveling-wave stripline deflector.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

RAMP TIME S double 1e-09 time to ramp to full strenth

TIME OFFSET S double 0.0 offset of ramp-start time

VOLTAGE V double 0.0 maximum voltage between
plates due to ramp

GAP M double 0.01 gap between plates

STATIC VOLTAGE V double 0.0 static component of voltage

TILT RAD double 0.0 rotation about longitudinal
axis

ACCURACY double 0.0001 integration accuracy

X MAX M double 0.0 x half-aperture

Y MAX M double 0.0 y half-aperture

DX M double 0.0 misalignment

DY M double 0.0 misalignment

PHASE REFERENCE long 0 phase reference number
(to link with other time-
dependent elements)

N STEPS long 100 number of steps (for nonadap-
tive integration)

METHOD STRING runge-kutta integration method (runge-
kutta, bulirsch-stoer, non-
adaptive runge-kutta, modi-
fied midpoint)

FIDUCIAL STRING t,median {t|p},{median|min|max|ave|first|light}
(e.g., ”t,median”)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

447

UKICKMAP

10.118 UKICKMAP—An undulator kick map (e.g., using data from RADIA).

An undulator kick map (e.g., using data from RADIA).
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

TILT RAD double 0.0 rotation about longitudinal
axis

DX M double 0.0 misalignment

DY M double 0.0 misalignment

DZ M double 0.0 misalignment

FIELD FACTOR double 1 Factor by which to multiply
the magnetic fields.

XY FACTOR double 1 Factor by which to multiply
the x and y values in the in-
put file.

YAW double 0.0 Yaw angle of the device.
Meaningful only if N KICKS is
not 1.

INPUT FILE STRING NULL Name of SDDS file with undu-
lator kickmap data.

N KICKS long 1 Number of kicks into which to
split the element.

PERIODS long 0 Number of periods (for ra-
diation integral computations
only).

KREF double 0.0 Reference value of un-
dulator parameter.
K=KREF*FIELD FACTOR
is used for radiation integral
calculations only assuming
period=L/PERIODS.

KACTUAL double 0.0 Value of undulator parameter,
used for radiation integral cal-
culations only assuming pe-
riod=L/PERIODS.

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

448

UKICKMAP continued

An undulator kick map (e.g., using data from RADIA).
Parameter Name Units Type Default Description

YAW END short 0 -1=Entrance, 0=Center,
1=Exit

SINGLE PERIOD MAP short 0 if non-zero, the map file is for
a single period. L still per-
tains to the full device. Set
N KICKS to the number of pe-
riods.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element provides simulation of undulators using kick maps [27]. A script (km2sdds) is
provided with the elegant distribution to translate RADIA [28] output into SDDS for use by
elegant.

The input file has the following columns:

• x — Horizontal position in meters.

• y — Vertical position in meters.

• xpFactor — Horizontal kick factor Cx in T 2m2. This factor is defined by equation (5a) in
[27]. In particular, ∆x′ = Cx/H

2, where H is the beam rigidity in T 2m2.

• ypFactor — Vertical kick factor Cy in T 2m2. This factor is defined by equation (5b) in [27].
In particular, ∆y′ = Cy/H

2, where H is the beam rigidity in T 2m2.

The values of x and y must be laid out on a grid of equispaced points. It is assumed that the data
is ordered such that x varies fastest. This can be accomplished with the command

% sddssort -column=y,increasing -column=x,increasing input1.sdds input2.sdds

where input1.sdds is the original (unordered) file and input2.sdds is the new file, which would
be used with UKICKMAP.

The data file is assumed to result from integration through a full device. If instead it results
from integration through just a single period of a full device, one should set the SINGLE_PERIOD_MAP
parameter to 1 and N_KICKS equal to the number of periods. (One can also use the FIELD_FACTOR
parameter to get the same result, but this is confusing and is discouraged.)

elegant performs radiation integral computations for UKICKMAP and can also include radiation
effects in tracking. This feature has limitations, namely, that the radiation integral computations
assume the device is horizontally deflecting. However, in tracking, no such assumption is made.
To obtain synchrotron radiation integral effects (e.g., in output from twiss_output), the KREF and
PERIODS parameters must be given. Care must be taken when using the FIELD_FACTOR parameter

449

in this case, particularly if it is adjusted to account for using a single-period kickmap multiple
times. To obtain synchrotron radiation effects in tracking, the SYNCH_RAD and/or ISR flags must
additionally be used.

N.B.: at present this element is not included in beammoments computations via the moments_output
command (the CWIGGLER element is an option for that).

The YAW and YAW_END parameters can be used in the simulation of canted IDs. Normally,
steering magnets are used to create an angle between the devices. The devices are thus oriented in
the reference coordinate system, meaning the beam tranverses the IDs at an angle. If it is desirable
to align the IDs to the beam, the IDs can be yawed. A positive yaw will tilt the ID so that it is
colinear with a beam that has been kicked by a positive horizontal steering angle. The YAW_END

parameter defines which end of the ID is held fixed when the yaw is applied.
This element was requested by W. Guo (BNL), who also assisted with the implementation and

debugging.

450

VKICK

10.119 VKICK—A vertical steering dipole implemented as a matrix, up to 2nd
order. Use EVKICK for symplectic tracking.

A vertical steering dipole implemented as a matrix, up to 2nd order. Use EVKICK for symplectic
tracking.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

KICK RAD double 0.0 kick strength

TILT RAD double 0.0 rotation about longitudinal
axis

B2 1/M2 double 0.0 normalized sextupole strength
(kick = KICK*(1+B2*y2̂))

CALIBRATION double 1 strength multiplier

EDGE EFFECTS short 0 include edge effects?

ORDER short 0 matrix order

STEERING short 1 use for steering?

SYNCH RAD short 0 include classical, single-
particle synchrotron radia-
tion?

ISR short 0 include incoherent syn-
chrotron radiation (quantum
excitation)?

LERAD double 0.0 if L=0, use this length for ra-
diation computations

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

451

VMON

10.120 VMON—A vertical position monitor, accepting a rpn equation for the
readout as a function of the actual position (y).

A vertical position monitor, accepting a rpn equation for the readout as a function of the actual
position (y).
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes
Parameter Name Units Type Default Description

L M double 0.0 length

DX M double 0.0 misalignment

DY M double 0.0 misalignment

WEIGHT double 1 weight in correction

TILT double 0.0 rotation about longitudinal
axis

CALIBRATION double 1 calibration factor for readout

SETPOINT M double 0.0 steering setpoint

ORDER short 0 matrix order

READOUT STRING NULL rpn expression for readout (ac-
tual position supplied in vari-
able y)

CO FITPOINT short 0 If nonzero, then closed or-
bit value is placed in variable
<name>#<occurence>.yco

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

452

WAKE

10.121 WAKE—Longitudinal wake specified as a function of time lag behind
the particle.

Longitudinal wake specified as a function of time lag behind the particle.
Parallel capable? : yes
GPU capable? : yes
Back-tracking capable? : yes

453

Parameter Name Units Type Default Description

INPUTFILE STRING NULL name of file giving Green func-
tion

TCOLUMN STRING NULL column in INPUTFILE con-
taining time data

WCOLUMN STRING NULL column in INPUTFILE con-
taining Green function

CHARGE C double 0.0 beam charge (or use CHARGE
element)

FACTOR C double 1 factor by which to multiply
wake

N BINS long 0 number of bins for current his-
togram

INTERPOLATE long 0 interpolate wake?

SMOOTHING long 0 Use Savitzky-Golay filter to
smooth current histogram?

SG HALFWIDTH long 4 Savitzky-Golay filter half-
width for smoothing

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

CHANGE P0 long 0 change central momentum?

ALLOW LONG BEAM long 0 allow beam longer than wake
data?

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the wake
to full strength.

BUNCHED BEAM MODE long 1 If non-zero, then do calcula-
tions bunch-by-bunch.

ACAUSAL ALLOWED long 0 If non-zero, then an acausal
wake is allowed.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

The input file for this element gives the longitudinal Green function, W (t) versus time behind
the particle. The units of the wake are V/C, so this element simulates the integrated wake of
some structure (e.g., a cell or series of cells). If you have, for example, the wake for a cell and
you need the wake for N cells, then you may use the FACTOR parameter to make the appropriate
multiplication. The values of the time coordinate should begin at 0 and be equi-spaced, and be
expressed in seconds. A positive value of time represents the distance behind the exciting particle.

A positive value of W (t) results in energy loss. A physical wake function should be positive at
t = 0. Causality requires that W (t) = 0 for t < 0. Acasual wakes are supported, provided the user

454

sets ACAUSAL_ALLOWED=0. The data file must contain a value of W (t) at t = 0, and should have
equal spans of time to the negative and positive side of t = 0.

Use of the CHARGE parameter on the WAKE element is disparaged. It is preferred to use the
CHARGE element as part of your beamline to define the charge.

Setting the N BINS paramater to 0 is recommended. This results in auto-scaling of the number
of bins to accomodate the beam. The bin size is fixed by the spacing of the time points in the wake.

The default degree of smoothing (SG HALFWIDTH=4) may be excessive. It is suggested that users
vary this parameter to verify that results are reliable if smoothing is employed (SMOOTHING=1).

The algorithm for the wake element is as follows:

1. Compute the arrival time of each particle at the wake element. This is necessary because
elegant uses the longitudinal coordinate s = βct.

2. Find the mean, minimum, and maximum arrival times (tmean, tmin, and tmax, respectively).
If tmax − tmin is greater than the duration of the wakefield data, then elegant either exits
(default) or issues a warning (if ALLOW_LONG_BEAM is nonzero). In the latter case, that part
of the beam that is furthest from tmean is ignored for computation of the wake.

3. If the user has specified a fixed number of bins (not recommended), then elegant centers
those bins on tmean. Otherwise, the binning range encompasses tmin−∆t to tmax+∆t, where
∆t is the spacing of data in the wake file.

4. Create the arrival time histogram. If any particles are outside the histogram range, issue a
warning.

5. If SMOOTHING is nonzero, smooth the arrival time histogram.

6. Convolve the arrival time histogram with the wake function.

7. Multiply the resultant wake by the charge and any user-defined factor.

8. Apply the energy changes for each particle. This is done in such a way that the transverse
momentum are conserved.

9. If CHANGE_P0 is nonzero, change the reference momentum of the beamline to match the
average momentum of the beam.

Bunched-mode application of the short-range wake is possible using specially-prepared input
beams. See Section 6 for details. The use of bunched mode for any particular WAKE element is
controlled using the BUNCHED_BEAM_MODE parameter.

455

WATCH

10.122 WATCH—A beam property/motion monitor–allowed modes are cen-
troid, parameter, coordinate, and fft.

A beam property/motion monitor–allowed modes are centroid, parameter, coordinate, and fft.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : yes

456

Parameter Name Units Type Default Description

FRACTION double 1 fraction of particles to dump
(coordinate mode)

START PID long -1 starting particleID for parti-
cles to dump

END PID long -1 ending particleID for particles
to dump

INTERVAL long 1 interval for data output (in
turns)

START PASS long 0 pass on which to start

END PASS long -1 pass on which to end (inclu-
sive). Ignored if negative.

FILENAME STRING output filename, possibly in-
complete (see below)

LABEL STRING output label

MODE STRING coordinates coordinate, parameter, cen-
troid, or fft. For fft mode, you
may add a space and a qualifer
giving the window type: han-
ning (default), parzen, welch,
or uniform.

X DATA short 1 include x data in coordinate
mode?

Y DATA short 1 include y data in coordinate
mode?

LONGIT DATA short 1 include longitudinal data in
coordinate mode?

EXCLUDE SLOPES short 0 exclude slopes in coordinate
mode?

FLUSH INTERVAL long 100 file flushing interval (parame-
ter or centroid mode)

SPARSE INTERVAL long 1 interval for particle output
(coordinate mode)

DISABLE short 0 If nonzero, no output will be
generated.

USE DISCONNECT short 0 If nonzero, files are discon-
nected between each write op-
eration. May be useful for par-
allel operation. Ignored other-
wise.

457

WATCH continued

A beam property/motion monitor–allowed modes are centroid, parameter, coordinate, and fft.

Parameter Name Units Type Default Description

INDEX OFFSET long 0 Offset for file indices for se-
quential file naming.

REFERENCE FREQUENCY double -1 If non-zero, the indicated fre-
quency is used to define the
bucket center for purposes of
computing time offsets.

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

The output filename may be an incomplete filename. In the case of the WATCH point element,
this means it may contain one instance of the string format specification “%s” and one occurence
of an integer format specification (e.g., “%ld”). elegant will replace the format with the rootname
(see run_setup) and the latter with the element’s occurrence number. For example, suppose you
had a repetitive lattice defined as follows:

W1: WATCH,FILENAME=’’%s-%03ld.w1’’

Q1: QUAD,L=0.1,K1=1

D: DRIFT,L=1

Q2: QUAD,L=0.1,K1=-1

CELL: LINE=(W1,Q1,D,2*Q2,D,Q1)

BL: LINE=(100*CELL)

The element W1 appears 100 times. Each instance will result in a new file being produced. Successive
instances have names like “rootname-001.w1”, “rootname-002.w1”, “rootname-003.w1”, and so on
up to “rootname-100.w1”. (If instead of “%03ld” you used “%ld”, the names would be “rootname-
1.w1”, “rootname-2.w1”, etc. up to “rootname-100.w1”. This is generally not as convenient as the
names don’t sort into occurrence order.)

The files can easily be plotted together, as in

% sddsplot -column=t,p *-???.w1 -graph=dot -separate

They may also be combined into a single file, as in

% sddscombine *-???.w1 all.w1

In passing, note that if W1 was defined as

W1: WATCH,FILENAME=’’%s.w1’’

or

W1: WATCH,FILENAME=’’output.w1’’

458

only a single file would be produced, containing output from the last instance only.
Notes:

1. Confusion sometimes occurs about some of the quantities related to the s coordinate in this
file when in parameter mode. Please see Section 4 above.

2. This element can adversely affect parallel efficiency. Use of the START_PASS, END_PASS,
INTERVAL, and FLUSH_INTERVAL options can help reduce the impact. Also, particle output is
the most expensive, by far.

459

WIGGLER

10.123 WIGGLER—A wiggler or undulator for damping or excitation of the
beam.

A wiggler or undulator for damping or excitation of the beam.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

L M double 0.0 length

RADIUS M double 0.0 Peak bending radius. Ignored
if K or B is non-negative.

K double 0.0 Dimensionless strength pa-
rameter.

B T double 0.0 Peak vertical magnetic field.
Ignored if K is non-negative

DX double 0.0 Misaligment.

DY double 0.0 Misaligment.

DZ double 0.0 Misaligment.

TILT double 0.0 Rotation about beam axis.

POLES long 0 Number of wiggler poles

FOCUSING short 1 If 0, turn off vertical focusing
(this is unphysical!)

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element simulates a wiggler or undulator. There are two aspects to the simulation: the
effect on radiation integrals and the vertical focusing. Both are included as of release 15.2 of elegant.

If the number of poles should be an odd integer, we include half-strength end poles to match
the dispersion, but only for the radiation integral calculation. For the focusing, we assume all the
poles are full strength (i.e., a pure sinusoidal variation). If the number of poles is an even integer,
no special end poles are required, but we make the unphysical assumption that the field at the
entrance (exit) of the device jumps instantaneously from 0 (full field) to full field (0).

The radiation integrals were computed analytically using Mathematica, including the variation
of the horizontal beta function and dispersion. For an odd number of poles, half-strength end-
poles are assumed in order to match the dispersion of the wiggler. For an even number of poles,
half-length end poles are assumed (i.e., we start and end in the middle of a pole), for the same
reason.

The vertical focusing is implemented as a distributed quadrupole-like term (affecting ony the
vertical, unlike a true quadrupole). The strength of the quadrupole is (see Wiedemann, Particle

460

Accelerator Physics II, section 2.3.2)

K1 =
1

2ρ2
, (156)

where ρ is the bending radius at the center of a pole. The undulator is focusing in the vertical
plane.

The wiggler field strength may be specified either as a peak bending radius ρ (RADIUS pa-
rameter) or using the dimensionless strength parameter K (K parameter). These are related by

K =
γλu

2πρ
, (157)

where γ is the relativistic factor for the beam and λu is the period length.

461

ZLONGIT

10.124 ZLONGIT—A simulation of a single-pass broad-band or functionally
specified longitudinal impedance.

A simulation of a single-pass broad-band or functionally specified longitudinal impedance.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no

462

Parameter Name Units Type Default Description

CHARGE C double 0.0 beam charge (or use CHARGE
element)

BROAD BAND long 0 broad-band impedance?

RA Ohm double 0.0 shunt impedance, Ra=V2̂/P

RS Ohm double 0.0 shunt impedance (Rs=Ra/2)

Q double 0.0 cavity Q

FREQ Hz double 0.0 frequency
(BROAD BAND=1)

ZREAL STRING NULL <filename>=<x>+<y> form
specification of input file giv-
ing real part of impedance vs f
(BROAD BAND=0)

ZIMAG STRING NULL <filename>=<x>+<y>
form specification of in-
put file giving imaginary
part of impedance vs f
(BROAD BAND=0)

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

N BINS long 128 number of bins for current his-
togram

MAX N BINS long 0 Maximum number of bins for
current histogram

WAKES STRING NULL filename for output of wake

WAKE INTERVAL long 1 interval in passes at which to
output wake

WAKE START long 0 pass at which to start to out-
put wake

WAKE END long 9223372036854775807 pass at which to stop to output
wake

AREA WEIGHT long 0 use area-weighting in assigning
charge to histogram?

INTERPOLATE long 0 interpolate wake?

SMOOTHING long 0 Use Savitzky-Golay filter to
smooth current histogram?

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

SG HALFWIDTH long 4 Savitzky-Golay filter
halfwidth for smoothing

463

ZLONGIT continued

A simulation of a single-pass broad-band or functionally specified longitudinal impedance.
Parameter Name Units Type Default Description

REVERSE TIME ORDER long 0 Reverse time-order of particles
for wake computation?

FACTOR double 1 Factor by which to multiply
impedance.

START ON PASS long 0 The pass on which the
impedance effects start.

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the
impedance to full strength.

HIGH FREQUENCY CUTOFF0 double -1 Frequency at which smoothing
filter begins. If not positive,
no frequency filter smoothing
is done. Frequency is in units
of Nyquist (0.5/binsize).

HIGH FREQUENCY CUTOFF1 double -1 Frequency at which
smoothing filter is 0. If
not given, defaults to
HIGH FREQUENCY CUTOFF0.

BUNCHED BEAM MODE long 1 If non-zero, then do calcula-
tions bunch-by-bunch.

ALLOW LONG BEAM long 0 Allow beam longer than cov-
ered by impedance data?

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element allows simulation of a longitudinal impedance using a “broad-band” resonator or
an impedance function specified in a file. The impedance is defined as the Fourier transform of the
wake function

Z(ω) =

∫ +∞

−∞
e−iωtW (t)dt (158)

where i =
√
−1, W (t) = 0 for t < 0, and W (t) has units of V/C.

For a resonator impedance, the functional form is

Z(ω) =
Rs

1 + iQ(ω
ωr

− ωr

ω)
, (159)

where Rs is the shunt impedance in Ohms, Q is the quality factor, and ωr is the resonant frequency.
When providing an impedance in a file, the user must be careful to conform to these conventions.

In addition, the units of the frequency column must be Hz, while the units of the impedance
components must be Ohms. At present, elegant does not check the units for correctness.

464

Other notes:

1. The frequency data required from the input file is not ω, but rather f = ω/(2π).

2. The default smoothing setting (SG HALFWIDTH=4), may apply too much smoothing. It is
recommended that the user vary this parameter if smoothing is employed.

3. Using the broad-brand resonator model can often result in a very large number of bins being
used, as elegant will try to resolve the resonance peak and achieve the desired bin spacing.
This can result in poor performance, particularly for the parallel version.

4. Wake output is available only in the serial version.

Bunched-mode application of the impedance is possible using specially-prepared input beams.
See Section 6 for details. The use of bunched mode for any particular ZLONGIT element is controlled
using the BUNCHED_BEAM_MODE parameter.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use
of data from external files to provide input waveforms. The external files are SDDS files, which
may have many columns. In order to provide a convenient way to specify both the filename and
the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value.
For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A

will be taken from file waveform.sdds. The first column is always the independent variable (e.g.,
time, position, or frequency), while the second column is the dependent quantity.

465

ZTRANSVERSE

10.125 ZTRANSVERSE—A simulation of a single-pass broad-band or functionally-
specified transverse impedance.

A simulation of a single-pass broad-band or functionally-specified transverse impedance.
Parallel capable? : yes
GPU capable? : no
Back-tracking capable? : no
Parameter Name Units Type Default Description

CHARGE C double 0.0 beam charge (or use CHARGE
element)

BROAD BAND long 0 broad-band impedance?

RS Ohm/m double 0.0 shunt impedance
(Rs=Ra/2=V2̂/(2*P))

Q double 0.0 cavity Q

FREQ Hz double 0.0 frequency
(BROAD BAND=1)

INPUTFILE STRING NULL name of file giving impedance
(BROAD BAND=0)

FREQCOLUMN STRING NULL column in INPUTFILE con-
taining frequency

ZXREAL STRING NULL column in INPUTFILE con-
taining real impedance for x
plane

ZXIMAG STRING NULL column in INPUTFILE con-
taining imaginary impedance
for x plane

ZYREAL STRING NULL column in INPUTFILE con-
taining real impedance for y
plane

ZYIMAG STRING NULL column in INPUTFILE con-
taining imaginary impedance
for y plane

BIN SIZE S double 0.0 bin size for current histogram
(use 0 for autosize)

INTERPOLATE long 0 interpolate wake?

N BINS long 128 number of bins for current his-
togram

MAX N BINS long 0 Maximum number of bins for
current histogram

SMOOTHING long 0 Use Savitzky-Golay filter to
smooth current histogram?

SG ORDER long 1 Savitzky-Golay filter order for
smoothing

SG HALFWIDTH long 4 Savitzky-Golay filter
halfwidth for smoothing

466

ZTRANSVERSE continued

A simulation of a single-pass broad-band or functionally-specified transverse impedance.
Parameter Name Units Type Default Description

DX M double 0.0 misalignment

DY M double 0.0 misalignment

FACTOR double 1 Factor by which to multiply x
and y impedances.

XFACTOR double 1 Factor by which to multiply x
impedance.

YFACTOR double 1 Factor by which to multiply y
impedance.

WAKES STRING NULL filename for output of wake

WAKE INTERVAL long 1 interval in passes at which to
output wake

WAKE START long 0 pass at which to start to out-
put wake

WAKE END long 9223372036854775807 pass at which to stop to output
wake

START ON PASS long 0 The pass on which the
impedance effects start.

RAMP PASSES long 0 Number of passes over which
to linearly ramp up the
impedance to full strength.

HIGH FREQUENCY CUTOFF0 double -1 Frequency at which smoothing
filter begins. If not positive,
no frequency filter smoothing
is done. Frequency is in units
of Nyquist (0.5/binsize).

HIGH FREQUENCY CUTOFF1 double -1 Frequency at which
smoothing filter is 0. If
not given, defaults to
HIGH FREQUENCY CUTOFF0.

X DRIVE EXPONENT long 1 Exponent applied to x coordi-
nates of drive particles

Y DRIVE EXPONENT long 1 Exponent applied to y coordi-
nates of drive particles

X PROBE EXPONENT long 0 Exponent applied to x coordi-
nates of probe particles

467

ZTRANSVERSE continued

A simulation of a single-pass broad-band or functionally-specified transverse impedance.
Parameter Name Units Type Default Description

Y PROBE EXPONENT long 0 Exponent applied to y coordi-
nates of probe particles

BUNCHED BEAM MODE long 1 If non-zero, then do calcula-
tions bunch-by-bunch.

ALLOW LONG BEAM long 0 Allow beam longer than cov-
ered by impedance data?

GROUP string NULL Optionally used to assign an
element to a group, with a
user-defined name. Group
names will appear in the pa-
rameter output file in the col-
umn ElementGroup

This element allows simulation of a transverse impedance using a “broad-band” resonator or
an impedance function specified in a file. The impedance is defined as the Fourier transform of the
wake function

Z(ω) =

∫ +∞

−∞
e−iωtW (t)dt (160)

where i =
√
−1, W (t) = 0 for t < 0, and W (t) has units of V/C/m. Note that there is no factor of i

in front of the integral. Thus, in elegant the transverse impedance is simply the Fourier transform
of the wake. This makes it easy to convert data from a program like ABCI into the wake formalism
using sddsfft.

For a resonator impedance, the functional form is

Z(ω) =
−iωr

ω

Rs

1 + iQ(ω
ωr

− ωr

ω)
, (161)

where Rs is the shunt impedance in Ohms/m, Q is the quality factor, and ωr is the resonant
frequency.

When providing an impedance in a file, the user must be careful to conform to these conventions.
In addition, the units of the frequency column must be Hz, while the units of the impedance
components must be Ohms/m. At present, elegant does not check the units for correctness.

Other notes:

1. The frequency data required from the input file is not ω, but rather f = ω/(2π).

2. The default smoothing setting (SG HALFWIDTH=4), may apply too much smoothing. It is
recommended that the user vary this parameter if smoothing is employed.

3. Using the broad-brand resonator model can often result in a very large number of bins being
used, as elegant will try to resolve the resonance peak and achieve the desired bin spacing.
This can result in poor performance, particularly for the parallel version.

4. Wake output is available only in the serial version.

468

Bunched-mode application of the impedance is possible using specially-prepared input beams.
See Section 6 for details. The use of bunched mode for any particular ZTRANSVERSE element is
controlled using the BUNCHED_BEAM_MODE parameter.

469

11 Examples

Example runs and post-processing files are available in a separate tar file. The examples are
intended to demonstrate program capabilities with minimal work on the user’s part. However, they
don’t pretend to cover all the capabilities.

Each demo is (typically) invoked using a command (usually a C-shell script) that can both run
elegant and post-process the output. The post-processing is often handled by a lower-level script
that is called from the demo script. These lower-level scripts are good models for the creation of
customized scripts for user applications.

The examples are organized into a number of directories and subdirectories. In each area, the
user will find a “Notebook” file (a simple ASCII file) that describes the example and how to run it.

Many examples for storage ring simulations reside in the PAR subdirectory. The PAR (Particle
Accumulator Ring) is a small storage ring in the APS injector that is good for quick examples
because of its size.

Here’s a helpful tip in searching the examples on UNIX/LINUX systems: suppose one wants
to find an example of the frequency_map command. One can search all the elegant command files
very quickly with this command:

find . -name ’*.ele’ | xargs fgrep frequency_map

Similarly, to find all examples that use CSBEND elements, one could use

find . -name ’*.lte’ | xargs fgrep -i csbend

470

• acceptance — Use of the acceptance feature when tracking collections of particles.

– energyScan1 — Tracking a FODO line with various apertures, with variation of the
initial momentum offset.

– fodoScan1 — Tracking a FODO line with various apertures, with scanning of the
quadrupole strengths.

– transportLineAcceptance — Determine transverse and momentum acceptance of a
transport line using tracking. Example by M. Borland (ANL).

• alphaMagnet— Optimization of the strength of an alpha magnet to compress the beam from
a thermionic rf gun.

• APSRing — Examples for the APS storage ring

– beamMoments — 6D beam moments calculation with errors

– ibsAndTouschekLifetime — Compute touschek lifetime with IBS-inflated emittances

– ibsVsEnergy — Compute IBS as a function of energy.

– ionEffects1 — Basic simulation of ion effects.

• beamBasedAlignment—Determines quadrupole offsets based on simulated beam-based align-
ment procedure.

• beamBreakup — Example of simulating beam-driven deflecting rf mode in a simple linac.

• bendErrors — Analysis of the effect of errors on the matrix elements for a four-dipole bunch
compression chicane.

• boosterRamp — Examples of simulating ramping in a booster.

– elementByElement — Example of simulating ramping in a booster, using the NSLS-II
booster lattice (R. Fliller).

– ILMATRIX — Example of ramping using ILMATRIX for faster tracking.

• bpmOffsets1 — Example of loading BPM offsets from an external file and then correcting
the orbit with those offsets.

• bunchCompression — Examples of using a four-dipole chicane for bunch compression.

– bunchComp — Four examples revolving around a four-dipole chicane bunch compressor.
Simulations include basic compression, sensitivity to timing, phase, and beam energy.

– bunchCompJitter — Simulation of a linac with a bunch compressor, including phase
and voltage errors in the linac.

– bunchCompJitter2 — Simulation of a linac with a bunch compressor, including phase
and voltage errors in the linac. In this case, the errors are generated externally.

– bunchCompLSC — Inclusion of longitudinal space charge in simulation of a linac with a
bunch compressor.

– bunchCompOptimize — Example of using tracking to optimize a linac and bunch com-
pressor including a 4th-harmonic linearizer.

471

• chromaticAmplitudes — Example of minimizing chromatic amplitude functions in a simple
beamline.

• chromaticResponse — Example of computing the chromatic transfer functions R16(s) and
R26(s) as described in P. Emma and R. Brinkmann, SLAC-PUB-7554.

• constructOrbitBump1 — Illustration of how to make an orbit bump using BPM offsets and
the orbit correction algorithm.

• coupling — Examples of coupling calculation and correction.

– couplingCorrection1 — Scripts to perform coupling correction for the APS ring, em-
ulating what is done in APS operations. These scripts are now part of the elegant
distribution.

– couplingCorrection2 — Example of using cross-plane response matrix and vertical
dispersion to correct the coupling.

• customBeamDistributions — Examples of making custom beam distributions for tracking
with elegant.

– doubleBeam1 — Example of how to make a double-gaussian time distribution using
two runs. The resultant beam would be used in a subsequent run using the sdds beam
command.

– example1 — Gaussian energy distribution, linearly-ramped time distribution, and uni-
form transverse distributions.

– parabolic — Gaussian longitudinal distribution combined with parabolic transverse
distributions.

• cwiggler — Examples of using the CWIGGLER element.

– cwig+kickmap — Example of simulating a simple wiggler with CWIGGLER, making a
kickmap from trackings, then validating the kickmap.

– cwiggler1 — A simple example of dynamic aperture with a set of sinusoidal wigglers,
using the CWIGGLER element.

– cwiggler2 — An simple example of dynamic aperture with a set of two-component
horizontal wigglers, using the CWIGGLER element.

• DATuneScan — Performs a scan of the tunes in a storage ring and determines the variation
in dynamic aperture.

• defeatLinkage — Example of how to defeat the automatic link between the gradient and
other multipoles in a dipole and the strength of the dipole itself.

• ellipseComparison — Example of comparing beam ellipse from tracking to ellipse implied
by the twiss parameters.

• emitProc — Various applications of the program sddsemitproc, which processes quad-scan
emittance measurements.

– emitProc1 — Simple example with constant measurement errors.

472

– emitProc2 — Measurement errors are supplied in the data file.

– emitProc3 — Includes the presence of dispersion, with constant measurement errors.

– emitProc4 — Quadrupole scan values are supplied from an external source.

– emitProc5 — Includes acceleration as part of the beamline.

• fiducialization — Examples for fiducializaton of a beamline.

– fiducial1 — Example of fiducialization with a fiducial bunch and a perturbed bunch.
The system in question is a linac with 50 structures, a four dipole chicane, then 50 more
structures

• full457MeV — Tracking of the APS linac with a PC gun beam, up to the entrance of the
LEUTL undulator.

• GENESIS2.0 — Example of running SDDS-compliant GENESIS 1.3 with output from elegant
for LCLS.

• geneticOptimizer1— Illustration of using the geneticOptimizer script together with elegant.

• ILMatrixFromTracking — Determination of the values for ILMATRIX based on analysis of
tracking data.

• injRingMatch — Matching of a transport line to a storage ring.

– injRingMatch1 — Illustration of finding the periodic solution for a ring, then matching
a transport line to that solution.

– injRingMatch2 — Illustration of finding the periodic solution for a ring, then matching
a transport line to that solution. In this case, a single run is used.

– movingElements — Example of matching a transport line to a ring with movable
quadrupoles but fixed total length.

• LCLS — LCLS-I tracking example from P. Emma, November 2007.

– wakes —

• linacDispersion1 — Example of determining the initial dispersion error in a linac.

• LongitudinalSpaceCharge — Examples related to longitudinal space charge.

– LSCOscillationExample— Example of longitudinal space charge oscillations in a drift
space.

• lsrMdltr — Various examples of using the LSRMDLTR (Laser Modulator) element

– example1 — Simple example using LCLS-I-like parameters

– example2 — Includes a time-profile on the laser.

– example3 — Simulation of laser slicing for a storage ring.

• matching — Various examples of lattice matching and optimization.

473

– beamSizeMatch1 — Example of adjusting the initial beam parameters to match the
measured beam sizes at a set of diagnositcs.

– betaMatching — A simple two-stage matching example.

– IDCompensation — Example of compensating for insertion device focusing effects.

– linacMatching1— Example of three-part matching of a linac with a bunch compressor.

– linearize2 — Example of reducing nonlinearities in phase space using the REMCOR
element to remove linear correlations first.

– matchMeasuredBetas — Optimization of lattice quadrupoles to create a model that
reproduces measured beta functions.

– matchTwoEnergies — Example of matching beams with two different initial energies
in a linac. The beams are affected by common quadrupoles, but also by quadrupoles
unique to each beam.

– multiPartMatching1 — Complex example of multi-part matching for a linac with sev-
eral splice points.

– multiPartMatching2 — Example of storage ring matching with three types of cells.

– spectrometer1 — Optimizes a simple spectrometer to maximize energy resolution.

• MBALatticeDAWithErrors— Example of performing DA vs momentum offset tracking when
the lattice has strong sextupoles that make the orbit difficult to correct.

• multibunchCollectiveEffects — Examples of multi-bunch collective effects for APS stor-
age ring and other cases.

– APS-24Bunch-CBI — Includes main and harmonic cavities, beamloading, rf feedback,
beam feedback, and short-range impedance.

– ILMatrixFromTracking— Example of using tracking to set up the ILMATRIX element
for fast tracking. This is useful for increasing the speed of collective effects simulations.

– linacBunchTrain1 — Includes main linac cavities, dipole HOMs, and monopole HOMs
for a simple linac, showing beam breakup.

• multiStepErrors1 — Example of multi-step addition and correction of errors for a storage
ring.

• NSLS-II-GirderMisalignment—Simulation of girder misalignment for NSLS-II, by S. Kramer
(BNL) and M. Borland (ANL).

• outboardTrajCorr—Examples of using the response matrix computed by elegant to perform
trajectory correction with a script.

– outboardTrajCorr1— Compares trajectory correction inside elegant to correction per-
formed with an external script.

– outboardTrajCorr2— Compares trajectory correction inside elegant to correction per-
formed with an external script. Includes BPM offsets.

• PAR — Numerous examples using the small APS Particle Accumulator Ring.

– accumulate — Simulates adding particles to an already-stored beam.

474

– alphaExpansion — Example of computing momentum compaction (alpha) to higher
order using tracking.

– broadBandImpedance — Example of using ZLONGIT, ILMATRIX, and SREFFECTS
to simulate a broad-band impedance in a storage ring.

– bunchLengthening — Simulation of a passive bunch-lengthening cavity using the RF-
MODE element.

– chromCorrection — Simple chromaticity correction with two families. Also illustrates
saving and loading correction results.

– chromTracking — Illustration of using tracking to determine variation of tune with
momentum.

– chromTracking2 — Similar to chromTracking, but includes determination of the mo-
mentum dependence of the beta functions.

– CSR — Example of tracking with APS Particle Accumulator Ring with a Coherent Syn-
chrotron Radiation impedance.

– DANormSigma — Determination of dynamic aperture in terms of beam size.

– daOpt — Example of optimization of dynamic acceptance.

– dynamicAperture — Determination of dynamic aperture for a series of momentum er-
rors.

– dynamicApertureWithSynchMotion — Example of dynamic aperture with radiation
damping and synchrotron motion.

– ejectionOptimization— Tuning of a multi-turn extraction system using several kick-
ers.

– elasticScatteringTracking — Tracking to determine elastic scattering lifetime and
loss distribution.

– emittanceOptimization — Direct optimization of the emittance using linear optics
tuning.

– fineDynamicAperture — High-resolution dynamic aperture including a map of where
particles are lost.

– fixedLVsRegularOrbit — Illustration of the difference between orbits computed with
fixed path length (fixed rf frequency) and fixed beam energy (variable rf frequency).

– frequencyMap — Example of frequency map analysis

– frequencyMap-x-delta — Example of frequency map analysis for (x, delta)

– gasScatteringLifetime— Simple computation of gas scattering lifetime using a fixed
pressure and gas mixture.

– gasScatteringLifetimePresFile— Computation of gas scattering lifetime using a file
giving the pressure around the ring.

– ILMatrixScan — Set up ILMATRIX element, then scan the tune.

– inelasticScatteringTracking — Tracking to determine inelastic scattering lifetime
and loss distribution.

– moments — Computes 6D beam moments with coupling errors.

– momentumAperture — Computes the s-dependent momentum aperture without errors.

475

– offMomentumDA — Another computation of off-momentum dynamic aperture

– offMomentumTwiss — Computation of off-momentum twiss parameters.

– offMomentumTwiss2 — Computation of off-momentum twiss parameters vs s.

– quadScan — Computation of twiss parameters as quadrupoles are varied according to
an external table.

– randomMultipoles—Dynamic aperture including randommultipole errors in the quadrupoles
and sextupoles.

– synchrotronTune — Simple example of tracking with synchrotron motion.

– tracking — Visualization of motion in x-x’ and y-y’ phase space.

– trajOrbitCorrect — Correct the first-turn trajectory, then correct the orbit.

– TSWATracking — Uses tracking and post-processing to determine tune variation with
amplitude.

– tuneExcitation — Use a swept kick to excite the horizontal tune, observing excitation
of the synchrotron tune as well.

– tuneOptimization — Correct the tunes and chromaticities.

– twissCalculation — Simple calculation of the twiss parameters

– twoCavityMoments — Calculation of 6D beam moments in the presence of main and
harmonic rf cavities.

• parallel — Various runs illustrating a few features of the parallel version.

– DA — Dynamic aperture calculation.

– FMA — Frequency map analysis.

– LMA — Local momentum aperture calculation.

• pepperPot — Examples of using the PEPPER POT element

– basic — Basic example of simulating a pepper-pot plate.

– pepperPotScan — Example of simulating a pepper-pot plate with emittance analysis.

• periodicTwissRFCA—Demonstration that one can’t have periodic beta functions in a FODO
cell array with linac structures.

• pulsedSextInjection— Illustration of optimizing the sextupoles of pulsed sextupole kickers
for injection into a storage ring.

• rampTunesWithBeam — Example of ramping tunes while tracking beam. In this case, we
ramp the tunes across the difference coupling resonance.

• rfDeflectingCavity — A simple example of using a traveling wave rf deflector (RFDF).

• RFTMEZ0 — Tracking through a TM-mode rf cavity based on an off-axis expansion starting
from Ez(z) at r=0.

• scanParameters — Examples of scanning parameters of beamline elements.

476

– scanParameters1 — Scan two quadrupoles together.

– scanParameters2— Scan the phase of an rf cavity and look at synchrotron oscillations.

• scriptElement — Examples of using the SCRIPT element

– elegantShower — Use of the SCRIPT element to execute the electron-gamma shower
simulation code SHOWER as part of an elegant run.

– mergeBeams — Using the SCRIPT element to merge several beams into a simulation
that already has a beam.

– slitArray — Simulation of an array of slits using the SCRIPT element.

• sddsoptimizeExample— Example of using the program sddsoptimize to optimize the results
of elegant simulations. In this example, we vary a strength fudge factor for a set of quadrupoles
in a transport line in order to attempt to match measured H and V response matrices.

• serverExample — Example of using elegant in server mode to update lattice functions when
magnet strengths change.

• SPEAR3 — Various examples using an early SPEAR3 lattice

– dynamicAperture — Compute DA for several error seeds, including multipole errors.

– latticeErrors — Compute variation in lattice functions with errors, including correc-
tion of the orbit, tunes, and chromaticities.

• staticPlusDynamicErrors — Example of combining static and dynamic errors in one sim-
ulation.

• storageRingRfNoise — Example of including rf phase and amplitude noise in a tracking
simulation.

• transportLineHigherOrderDispersion— Determine higher-order dispersion in a transport
line using tracking.

• twissDerivatives — Example of how to compute slopes of beta, alpha, and dispersion as a
function of initial momentum for a transport line.

• twoBunchPhasing — Example of putting two bunches through a linac with the linac phased
to the first bunch.

• varyPlotExample — Example of varying a beamline parameter and computing beam prop-
erties, then plotting those properties vs s.

• wakesAndImpedances — Examples of wakes and impedances.

– transverse1 — Compare use of transverse wake and impedance methods for a damped
oscillator.

477

12 The rpn Calculator

The program rpn is a Reverse Polish Notation programmable scientific calculator written in C. It
is incorporated as a subprogram into elegant, and a number of the SDDS programs. It also exists
as a command-line program, rpnl, which executes its command-line arguments as rpn operations
and prints the result before exiting. Use of rpn in any of these modes is extremely straightforward.
Use of the program in its stand-alone form is the best way to gain familiarity with it. Once one has
entered rpn, entering “help” will produce a list of the available operators with brief summaries of
their function. Also, the rpn definitions file rpn.defns, distributed with elegant, gives examples
of most rpn operation types.

Like all RPN calculators, rpn uses stacks. In particular, it has a numeric stack, a logical stack,
and a string stack. Items are pushed onto the numeric stack whenever a number-token is entered, or
whenever an operation concludes that has a number as its result; items are popped from this stack
by operations that require numeric arguments. Items are pushed onto the logical stack whenever
a logical expression is evaluated; they are popped from this stack by use of logical operations
that require logical arguments (e.g., logical ANDing), or by conditional branch instructions. Items
enclosed in double quotes are pushed onto the string stack; items are popped from this stack by
use of operations that require string arguments (e.g., formatted printing).

rpn supports user-defined memories and functions. To create a user-defined memory, one simply
stores a value into the name, as in “1 sto unity”; the memory is created automatically when rpn

detects that it does not already exist. To create a user-defined function, enter the “udf” command;
rpn will prompt for the function name and the text that forms the function body. To invoke a
UDF, simply type the name.

A file containing rpn commands can be executed by pushing the filename onto the string stack
and invoking the “@” operator. rpn supports more general file I/O through the use of functions
that mimic the standard C I/O routines. Files are identified by integer unit numbers, with units 0
and 1 being permanently assigned to the terminal input and terminal output, respectively.

478

13 Change Log

13.1 Highlights of What’s New in Version 2019.3.0

Here is a summary of what’s changed since release 2019.2.1. Historical change logs are collected in
Section 13.

13.1.1 Bug Fixes for Elements

• The matrix for the SBEN element was incorrect when the length was negative (which is needed
for back-tracking). A. Zholents (ANL) and Y. Park (UCLA) helped identify the problem.

• The integrator used for the CSBEND element with the expanded Hamiltonian (EXPAND_HAMILTONIAN=1)
was very inaccurate and yieled poor results unless N_KICKS was large. This problem, pointed
out by Z. Duan (IHEP), was fixed.

• The interpolation used for UKICKMAP would previously produce invalid values for particles
near the upper (y > 0) and left (x > 0) edges of the grid. In essence, the interpolation
assumed the kickmap was periodic in x and y.

13.1.2 Bug Fixes for Commands

• DA trimming (to make the xClipped and yClipped columns, as well as the Area parameter)
was not working properly in the parallel version for full-plane runs. This was fixed. In
addition, the algorithm was improved for both the serial and parallel versions to iterate the
trimming until it converges.

• The multi-gaussian and multi-lorentzian feature of the ion_effects command, added in the
last release, proved unreliable, as reported by B. Podobedov (BNL). Several improvements
and bug fixes were implemented that should improve matters.

13.1.3 New and Modified Elements

• The SHRFDF element was added, which models a deflecting rf cavity using a space harmonic
expansion. This was implemented by Y.P. Sun (APS). See [55] for details.

• The LSCDRIFT element, which models longitudinal space charge, can now have its effective
length set automatically to correspond to the length of the upstream element.

13.1.4 New and Modified Commands

• The run_setup command has a new parameter, back_tracking, which allows invoking a
limited back-tracking capability. See the entry for run_setup for more details. This is an
experimental feature and users are encouraged to report problems to the forum.

• The ion_effects command was improved in several ways:

– The default distribution fitting parameters were modified to give improved convergence

– The default distribution fitting criterion is now the sum of the maximum fractional abso-
lute deviation over the histogram and the absolute fractional deviation of the ion charge.
This makes it less likely that overfitting will result in large spikes in the distribution.

479

– The new ion_histogram_max_bins parameter allows restricting the maximum number
of bins.

– The new ion_histogram_min_per_bin parameter allows setting a requirement on the
minimum number of macro ions per bin.

– The new freeze_ions_until_pass and freeze_electrons_until_pass parameters al-
low “freezing” the motion of the ions and electrons until a specified pass number. This
is useful for diagnostic purposes.

– The new pressure_factor parameter allows multiplying all the pressure profiles by a
common factor.

• The matrix_output command can now print the full matrix in a form accepted by Mathe-
matica.

13.1.5 Changes Specific to the MPI Parallel Version

• Some apparent MPI-related issues were resolved for the ion_effects command.

13.1.6 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

13.1.7 Changes to Related Programs and Files

• The touschekLifetime program now reports the value of deltaLimit in the output file,
whether that value is given explicitly or computed via the rf voltage.

• Added the program sdds5x5sigmaproc, which computes the 5x5 sigma matrix (i.e., all ele-
ments except those related to the time coordinates) from a quadrupole scan.

13.2 Highlights of What’s New in Version 2019.2.1

Here is a summary of what’s changed since release 2019.1.1.

13.2.1 Bug Fixes for Elements

• Fixed a bug in tracking-based matrix computation for CCBEND that would result in the program
hanging under some circumstances.

• Fixed a bug in the implementation of the expanded Hamiltonian for MULT elements.

• Fixed a bug in the BMXYZ element that caused a crash when multiple such elements were used.

• If COUPLING and EYREF were both non-zero for an SREFFECTS element, the EYREF value would
be ignored, which is potentially confusing. This issue is now flagged as an error. B. Podobodov
(BNL) brought the issue to our attention.

480

13.2.2 Bug Fixes for Commands

• The correct command, which performs trajectory or orbit correction, would fail to output
corrector data for both planes in some cases. This was fixed.

• The correct command, also had a bug in reporting the “uncorrected” trajectory in the
trajectory output file. Instead of giving the uncorrected trajectory, it was giving the trajectory
after the penultimate correction iteration. This was reported by forum user shancai.

• The memory-efficiency of bucket assignments, invoked when using use_bunched_mode in
sdds_beam, was improved, preventing crashes in some extreme cases for the serial version.

13.2.3 New and Modified Elements

• Added the APCONTOUR element, which provides an aperture or obstruction defined by an (x, y)
contour in an SDDS file.

• Added the TAPERAPC element, which provides a tapered circular aperture.

• Added the TAPERAPE element, which provides a tapered elliptical aperture.

• Added the TAPERAPR element, which provides a tapered rectangular aperture.

• RFMODE now allows ignoring particles that are outside the binning region, using the ALLOW_UNBINNED_PARTICLES
parameter.

• The required format for MATR (matrix from a text file) has changed slightly, as described on
the manual page. The element also has a new parameter, FRACTION that allows interpolating
the matrix elements with the identity matrix as one endpoint.

13.2.4 New and Modified Commands

• The ion_effects command now supports calculation of ion fields using a bi-gaussian distri-
bution (sum of two gaussians) or bi-lorentzian distribution (sum of two lorentzians), as well
as tri-gaussian and tri-lorentzian distributions. This which allows modeling the core and tails
of the distribution more accurately. A number of parameters were added for control of fitting
and output. J. Calvey (ANL) and R. Lindberg (ANL) co-developed this improvement.

• The sdds_beam command now offers control of which bunch is used for fiducialization of
rf systems. It defaults to the first bunch (#0), which is a change from the previous (and
frequently confusing) behavior of fiducializing to the entire beam.

• The aperture_search command now allows full-plane computations, i.e., computations cov-
ering both y ≥ 0 and y < 0.

13.2.5 Changes Specific to the MPI Parallel Version

• None

13.2.6 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

481

13.2.7 Changes to Related Programs and Files

• The touschekLifetime program now reports the value of deltaLimit in the output file,
whether that value is given explicitly or computed via the rf voltage.

• Added the program sdds5x5sigmaproc, which computes the 5x5 sigma matrix (i.e., all ele-
ments except those related to the time coordinates) from a quadrupole scan.

13.3 Highlights of What’s New in Version 2019.1.1

Note that following release 35.1.0, version numbers changed to the form year.release.minor, where
year is the four-digit year, release is the consecutive release number for the year, and minor is for
internal APS use.

Here is a summary of what’s changed since release 35.1.0. Historical change logs are collected
in Section 13.

13.3.1 Bug Fixes for Elements

• The BMXYZ element previously would inject particles at z = 0 by default, which is usually
not the desired behavior. Now, it injects at the start of the field map by default. The new
INJECT_AT_Z0 parameter can be used to recover the old behavior. In addition, drift spaces
are now automatically included to compensate for differences between the length of the field
map and the user-defined insertion length.

13.3.2 Bug Fixes for Commands

• The load_parameters command with change_defined_values=0 did not work correctly
when combined with insert_elements or replace_elements. This was reported by G.
Penn (LBNL).

• The insert_elements command would sometimes fail to insert all the intended elements
when insert_before=1 when insertion between consecutive elements was required. This was
reported by G. Penn (LBNL).

13.3.3 New and Modified Elements

• The BOFFAXE element was added. It allows integrating through a magnetic field defined by
an off-axis expansion from on-axis gradients.

• Transfer matrices are now automatically computed for BMXYZ and BGGEXP elements.

• The CSBEND, SBEND, and CCBEND elements now support separate fractional strength errors
(FSE) for the dipole and quadrupole terms.

• The HKPOLY element now supports and alternative, more general form for the drift Hamilto-
nian.

• The UKICKMAP element now has a flag to indicate that the kickmap is for a single period of an
insertion device, which makes it easier to configure. It also has a new parameter, KACTUAL,
for giving the K value independent of the field factor (which is applied to the kickmap).

482

13.3.4 New and Modified Commands

• The global_settings command now allows setting the default step sizes for tracking-based
determination of element-by-element matrices using the new tracking_matrix_step_size

parameter. The default values are the same as those used by the analyze_map command.

• The analyze_map command now allows changing the number of points in each dimension
and the maximum fit order.

• the correct_tunes command now allows specifying a list of quadrupoles to be excluded from
the tune knob.

13.3.5 Changes Specific to the MPI Parallel Version

• Fixed a bug that resulted in crashing of tracking-based matrix computation for certain num-
bers of processors.

• Fixed a bug in parallel hybrid simplex optimization, which would cause optimization to ter-
minate prematurely if one processor encountered an invalid condition (e.g., undefined tunes).

13.3.6 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

13.3.7 Changes to Related Programs and Files

• None.

13.4 Highlights of What’s New in Version 35.1.0

Here is a summary of what’s changed since release 35.0.1. Historical change logs are collected in
Section 13.

13.4.1 Bug Fixes for Elements

• The matrix for misaligned FMULT elements was incorrect. The misalignment was applied
twice.

• The edge effects for KQUAD were broken for tracking only in version 35.0.1. This was fixed.

13.4.2 Bug Fixes for Commands

• The filter parameters (start_occurence, end_occurence, s_start, s_end, after, and before)
of the steering_element command now work better when multiple such commands are given.
In particular, overlapping intervals are detected and non-overlapping intervals are correctly
implemented.

483

13.4.3 New and Modified Elements

• The HKPOLY element was added. It allows imparting kicks to the beam according to a Hamilto-
nians that are polynomial functions of (x, y) and (qx, qy). R. Lindberg (APS) helped develop
the concept for this element.

13.4.4 New and Modified Commands

• The correct command has a new parameter, force_alternation that forces orbit or tra-
jectory correction to continue with x/y alternation regardless of whether one plane appears
to have converged.

• The set_reference_particle_output command was added. It allows defining a reference
set of particle coordinates to which tracked coordinates will be compared for purposes of
optimization.

• The optimization_setup command now allows setting the interval (in terms of function
evaluations) between checks of the interrupt semaphore file. Previously, the file was checked
only at the end of a simplex pass.

13.4.5 Changes Specific to the MPI Parallel Version

• None.

13.4.6 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

13.4.7 Changes to Related Programs and Files

• None.

13.5 Highlights of What’s New in Version 35.0.1

Here is a summary of what’s changed since release 34.4.0.

13.5.1 Bug Fixes for Elements

• The order of edge transformations for the CCBEND element was revised to make more physical
sense.

• A bug was fixed in the expressions for integral-based fringe field effects in QUAD and KQUAD.
The bug resulted in very small inconsistencies between the matrices when K1 → −K1.

• Some small errors were found and fixed in the linear fringe treatment for the KQUAD and QUAD

elements. Thanks to X. Huang (SLAC) for pointing out the problem.

• A bug was fixed in the NIBEND element that resulted in incorrect edge effects for ANGLE<0.
This bug was apparently introduced in release 33.0.

484

• The SCRAPER element was not respecting changes to the DIRECTION or INSERT_FROM param-
eters made outside the lattice definition (e.g., using alter_elements or load_parameters).
In addition, the interpretation of the INSERT_FROM=’’x’’ and INSERT_FROM=’’y’’ was in-
correct, since these were supposed to correspond to a scraper inserted from both sides. Both
problems were reported by forum user Youssef.

• The SPEEDBUMP element was not respecting changes to the DIRECTION or INSERT_FROM param-
eters made outside the lattice definition (e.g., using alter_elements or load_parameters).

• The RFCA element would bomb if no particles per present on a processor and CHANGE_T=1.
This was found upon investigating a problem reported by G. Penn (ALS).

• The transport matrix for BGGEXP was being computed only to first order, which resulted in
erroneous values for chromaticity, for example. This was reported by R. Linbdberg (APS).

• When CSRDRIFT elements were divided using the divide_elements command or element_divisions
parameter of the run_setup command, the length was saved incorrectly to the parameters

file (requested from run_setup). This was reported by Pau Gonzalez.

13.5.2 Bug Fixes for Commands

• None.

13.5.3 New and Modified Elements

• The CCBEND element now was a YAW parameter that permits changing the entrance and exit
angles in a coordinated fashion. It also supports the FINT1, FINT2, and HGAP parameters
for soft-fringe effects, as well as explicit multipoles from octupole to 18-pole (in addition to
the existing support for systematic multipole errors). The multipoles at the entrance and
exit can now be specified separately, using the EDGE1_MULTIPOLES and EDGE2_MULTIPOLES

parameters.

• The FMULT element, which provides a general multipole with content specified by an SDDS file,
now affects matrix-based computations (e.g., twiss parameters, chromaticities, and transfer
matrix).

• The KSEXT element now provides a parameter for a normal quadrupole error, in addition to
the existing skew quadrupole error. The utility of this was pointed out by Y.-P. Sun (APS)
and X. Huang (SLAC).

• The BRANCH element now provides periodic branching, which permits modeling a periodic by-
pass, for example. This improvement was triggered by a question from forum user simone.dimitri.

• The global_settings command now has user overriding of default values, which means that
whenever the user changes a value, it becomes the new default for any subsequent instances
of the command in that run.

• The RFMODE element has additional features that help refine the agreement between the voltage
obtained by rf feedback and the effective voltage seen by the beam.

• The WAKE and TRWAKE elements now accept acausal wakes, provided the user explicitly allows
it with the ACAUSAL_ALLOWED parameter. This feature will be requested by R. Lindberg
(APS).

485

• The LSRMDLTR and CWIGGLER elements now include experimental capabilities providing a trans-
verse gradient in undulators or wigglers. In both cases, hard-to-correct residual trajectory
and dispersion effects are seen, which are not yet understood. For this reason, these features
are considered experimental.

13.5.4 New and Modified Commands

• The matrix_output command has two new parameters

– print_element_data controls whether the element data is printed in addition to the
matrices.

– printout_format allows controlling the format of the printed elements.

• The analyze_map command has a new parameter, printout_format, allows controlling the
format of the printed elements.

• The correct_tunes command has a new parameter, update_orbit, which allows controlling
whether the orbit is updated during correction. The need for this arose from a problem
encountered by I. Agapov (DESY).

• The chromaticity command has a new parameter, update_orbit, which allows controlling
whether the orbit is updated during correction.

• The tracking used for matrix determination for elements, such as CCBEND, BGGEXP, and others,
that rely on this, now takes advantage of parallel resources if Pelegant is used. This feature
can be controlled using the newly-added parallel_tracking_based_matrices control in
global_settings. The global_settings command also now offers the ability to control
the number of points per phase space dimension that are used in matrix fitting, via the
tracking_matrix_points parameter. The default value of this parameter has been set to
9—an increase from the minimalist value of 5 used in previous versions—in order to improve
accuracy. Forum posts by J. Björklund Svensson (MAX-Lab) helped spur work on these
features.

• The insert_sceffects command now supports averaging of beam size data turn-by-turn to
reduce noise in transverse space charge simulation in rings, via the new averaging_factor

parameter. This was suggested by V. Kornilov (GSI).

13.5.5 Changes Specific to the MPI Parallel Version

• None.

13.5.6 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

486

13.5.7 Changes to Related Programs and Files

• The FTABLE method for integration through 3D magnetic field maps now works in the abrat
program via the -ftable commandline option. Previously, the control existed but resulted
in no transformation of particles taking place.

• The program abrat now supports interpolation among multiple 2D field maps, which can be
used, for example, to find the operating point in a magnet for which the field scales differently
with current in different regions.

• For the longitCalcs script, the calculation of rf bucket height sometimes failed when a
harmonic voltage was present; this was fixed. Also, the option to run without the GUI and
put all results in a file was added.

• The makeWigglerFromBends script now includes the ability to add a gradient and specify the
beam energy.

• A new program, sdds4x4sigmaproc is included that allows processing beam moments mea-
surements from a quadrupole scan in a transport line to determine the 4x4 sigma matrix.

13.6 Highlights of What’s New in Version 34.4.0

Here is a summary of what’s changed since release 34.3.0.

13.6.1 Bug Fixes for Elements

• The FTABLE method for integration through 3D magnetic field maps now works in the BRAT

element via the USE_FTABLE control. Previously, the control existed but resulted in no trans-
formation of particles taking place.

• The YAW and PITCH parameters of the LTHINLENS and LMIRROR elements were overwriting the
TILT parameters of the same elements.

• The B7 and B8 parameters of the CSRCSBEND elements were overwriting the B6 parameter of
the same element.

13.6.2 Bug Fixes for Commands

• The share_tracking_based_matrices feature, controlled by the global_settings com-
mand, now works correctly. This can provide a considerable increase in performance when
tracking-based matrices are required for many beamline elements.

• The insert_sceffects command and SCMULT element, used for space-charge simulation in
rings, had a bug that caused the sign of the tune shift to be wrong for protons and positrons.
This was reported by forum user hongjin.

13.6.3 New and Modified Elements

• MARK elements with FITPOINT=1 now create psix and psiy symbols for use in optimization,
in addition to nux and nuy. This may be more intuitive for some users, as pointed out by
forum user jgarland.

487

• When used for longitudinal feedback, the TFBDRIVER element now includes simulation of the
feedback cavity resonance and driving circuit, using a circuit model developed by T. Berenc
(APS).

• When K. Hwang’s fringe model is used for the CSBEND element, automatic adjustment of the
FSE value can optionally be invoked in order to null out trajectory errors that result from the
fringe fields extending outside the magnet. This is obtained by setting FSE_CORRECTION=1.

• The TRACKING_MATRIX parameter of CSBEND can now be used to control the order of the
tracking-based matrix, with a limit of third order. This provides an alternative to the 2nd-
order analytical matrix.

• The CSBEND element now supports separate edge integral values for the entrance and exit
fringes, using the FINT1 and FINT2 parameters. If not given, the FINT parameter is used as
before.

• The CSBEND and CSRCSBEND elements now support a new symplectic edge effects mode, based
on the linear approach of K. L. Brown. It is similar to the existing, non-symplectic default
mode, but in most cases users won’t see a difference.

• The CSBEND, KQUAD, KSEXT, KOCT, KQUSE, and MULT elements now support use of the expanded
(to leading order) Hamiltonian by setting the EXPAND_HAMILTONIAN flag to 1. Note that no
significant reduction in run time is observed with the expanded Hamiltonian.

13.6.4 New and Modified Commands

• None.

13.6.5 Changes Specific to the MPI Parallel Version

• None.

13.6.6 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

13.6.7 Changes to Related Programs and Files

• The FTABLE method for integration through 3D magnetic field maps now works in the abrat
program via the -ftable commandline option. Previously, the control existed but resulted
in no transformation of particles taking place.

• The program abrat now places the vertex, entry, and exit points (which are provided by the
user) in the trajectory output file.

13.7 Highlights of What’s New in Version 34.3.0, June 14, 2018

Here is a summary of what’s changed since release 34.2.0.

488

13.7.1 Bug Fixes for Elements

• The CCBEND element had incorrect signs for the odd-order systematic multipoles when the
bending angle was negative. There was also an issue with incorrect ordering of edge effects
and coordinate transformations. R. Lindberg (APS) helped identify these problems.

• The KQUAD element had an issue with the order of the submatrices used for linear edge effects
when tracking. This would cause small tune errors in tracking compared to the results of
twiss_output.

13.7.2 Bug Fixes for Commands

• The beta-function scaling resulting from the twiss_scaling=1 setting for the elastic_scattering
command was incorrect. Although the tracking results would be correct, this made it more
difficult to optimize run time.

• The rf_setup command now handles αc < 0, a deficiency that was reported by P. Piot
(NIU/FNAL). It also now uses η = αc − 1/γ2 instead of αc, though this rarely makes a
significant difference.

• The computation of exact normalized emittances, requested with the global_settings com-
mand, had several issues that were fixed. First, the values assigned to the horizontal and
vertical corrected and uncorrected emittances were permuted. Second, in the serial version,
the corrected emittances (with dispersive terms removed) were computed incorrectly. This
would impact the sigma and final files from the run_setup command. J. Björklund Svens-
son (MAX-Lab) reported problems that helped find these bugs.

13.7.3 New and Modified Elements

• CCBEND has a new parameter, EDGE_ORDER, that allows controlling the order of edge kicks.

• BRANCH has a new parameter, DEFAULT_TO_ELSE, which allows determining how the element
behaves when tracking for closed orbits and the like.

13.7.4 New and Modified Commands

• The configuration command-line argument was added, which allows specifying a configu-
ration file to be read before processing the input file. This file can also be specified with the
ELEGANT_CONFIGURATION environment variable.

• The floor_coordinates command now creates additional columns in the output file, giving
data on the next element in the lattice. Given that data is only provided at the end of
elements, this provides an easier way to determine information at the start of elements.

• The insert_elements command now has a parameter, insert_before, that allows control-
ling whether elements are inserted before or after (default) the specified locations.

• The elastic_scattering command now includes data that indicates warning conditions in
the file specified by log_file.

489

13.7.5 Changes Specific to the MPI Parallel Version

• Read buffering was re-enabled for parallel I/O to avoid performance problems on GPFS
file systems. Write buffering is still disabled, since this seems to prevent data corruption
on some file systems. Users may wish to configure this for their file system using the new
ELEGANT_CONFIGURATION environment variable.

13.7.6 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

13.7.7 Changes to Related Programs and Files

• The scripts elasticScatteringAnalysis and inelasticScatteringAnalysis—which are
used to analyze data from the elastic_scattering and inelastic_scattering commands—
were replaced with compiled programs of the same name, giving a large reduction in run time.

• The script longitCalcs, which does rf calculations using an output file from twiss_output,
now supports a commandline mode that is convenient for use in other scripts.

• The script computeQuadFringeIntegrals was added. It computes the fringe integrals and
effective length for a quadrupole from gradient vs z data, producing a file suitable for config-
uring KQUAD elements.

• A bug was fixed in elegant2astra that would affect results for particles that are not highly
relativistic. Forum user Biaobin reported the bug and provided the fix.

• A bug was fixed in smoothDist6s that resulted in strange longitudinal phase space when the
average value of t was very large compared to the spread in t. Forum user Marcello reported
the bug.

13.8 Highlights of What’s New in Version 34.2.0, March 22, 2018

Here is a summary of what’s changed since release 34.1. Historical change logs are collected in
Section 13.

13.8.1 Bug Fixes for Elements

• None.

13.8.2 Bug Fixes for Commands

• The frequency_map command was incorrectly computing the diffusion rate as

dr =
log10

(

∆ν2x +∆ν2y
)

N
, (162)

instead of

dr = log10

(

∆ν2x +∆ν2y
N

)

, (163)

490

• The coupled_twiss_output command would sometimes crash when calculate_3d_coupling=0.

13.8.3 New and Modified Elements

• None.

13.8.4 New and Modified Commands

• The global_settings command has two new fields, mpi_io_force_file_sync and usleep_mpi_io_kludge,
which can be used to solved MPI I/O problems that appear on some file systems. Z. Pan
(LBNL) brought the problems to our attention.

• The floor_coodinates command now ignores MAXAMP elements when computing combined
vertex points of strings of dipoles.

• The coupled_twiss_output command did not compute the tunes of the two modes, as
pointed out by G. Wei (TJNAF). This was addressed with assistance from V. Sajaev (APS).

13.8.5 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

13.8.6 Changes to Related Programs and Files

• The program sddsbrightness now correctly includes the effect of Jx and Jy on the x and y
emittances when the -coupling option is used.

• Added the script parmela2elegant, to convert PARMELA beam data (ASCII format) to a
form acceptable by elegant.

• Fixed error in the atomic mass of CO2 in the script ionTrapping.

13.9 Highlights of What’s New in Version 34.1.0, 27 February 2018

Here is a summary of what’s changed since release 34.0. Historical change logs are collected in
Section 13.

13.9.1 Bug Fixes for Elements

• Restored the long-deprecated DIRECTION parameter for the SCRAPER element, as a conve-
nience.

• Fixed a problem that caused the SCRIPT element to sometimes hang up in Pelegant if some
processors did not have any particles after loading data from the script output file.

• The UKICKMAP element would sometimes fail to add synchrotron radiation effects during
tracking even if asked; this would happen, for example, if there was no twiss_output or
matrix_output command.

491

• The WIGGLER, UKICKMAP, CWIGGLER, and GFWIGGLER elements had an inconsistency in radiation
integral computations, in that in some cases gamma was used when βγ was intended. The
differences were very small for any practical case.

• The BRAT element and the abrat commandline program for tracking particles through 3D field
distributions had an error in the initial coordinate transformation, discovered by R. Lindberg
(APS). In practical use, the error seems to have had a negligible effect on results. Also, the
element was treated as a drift for matrix computations; now, the matrix is determined by
tracking (which can be time-consuming).

• Synchrotron radiation calculations for KQUAD, KSEXT, and KOCT had a bug that resulted in
only the last component being computed. For example, if steering or higher multipoles were
included, those would override the effect of the main field.

• Previously, when the KQUAD element was split (with the divide_elements command or
element_divisions in the run_setup command), soft-edge effects would be replicated at
the interior boundaries. This was fixed.

• Soft-edge effects on the KQUAD element were not exactly symmetric. This would, e.g., introduce
a slight asymmetry into an otherwise symmetric lattice. This has been fixed.

13.9.2 Bug Fixes for Commands

• The rf_setup command could not handle αc < 0, as discovered using files provided by P.
Piot (NIU/FNAL). This was fixed.

• The analyze_map command would crash if SDDS output was not requested. This was fixed.

13.9.3 New and Modified Elements

• The CCBEND element, which integrates symplectically in Cartesian coordinates through a
straight-pole combined-function bending magnet, was added.

• The BMXYZ element, which integrates particles through straight-element 3D magnetic field
maps, now includes misalignment parameters. Multiple BMXYZ elements that use the same
field map will share the data internally to reduce I/O and memory requirements.

• The EHKICK, EVKICK, and EHVKICK elements now include the RANDOM_MULTIPOLE_FACTOR and
SYSTEMATIC_MULTIPOLE_FACTOR parameters.

• The BGGEXP element can now handle bending magnets. The non-symplectic integrator was
replaced with a new method that is more accurate. R. Lindberg (APS) did most of the work
on this.

13.9.4 New and Modified Commands

• During tracking, particles are no long checked against apertures after transitioning through
zero-length elements that don’t modify the aperture. This improves performance in lattices
with many MONI, MARK, and similar elements.

• The analyze_map command can now output the matrix in SDDS format to second or third
order, on request.

492

13.9.5 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

13.9.6 Changes to Related Programs and Files

• The program sddsbrightness now correctly includes the effect of Jx and Jy on the x and y
emittances when the -coupling option is used.

• Added the script parmela2elegant, to convert PARMELA beam data (ASCII format) to a
form acceptable by elegant.

• Fixed error in the atomic mass of CO2 in the script ionTrapping.

13.10 Highlights of What’s New in Version 34.0, 31 October 2017

Here is a summary of what’s changed since release 33.1.1.

13.10.1 Bug Fixes for Elements

• A bug in the IONEFFECTS element was reported by J. Cavley (APS): when only one bunch
was present, the electron beam coordinates were zeroed out.

• A bug in the WATCH element caused elegant to crash in centroid and parameter mode when
the WATCH element was in a beamline branch that did not get executed on the first pass.

• In multi-step runs, the STEERING_MULTIPOLES input for the EKICK, EHKICK, and EVKICK

elements was ignored except on the first step.

13.10.2 Bug Fixes for Commands

• A bug in the ion_effects command was reported by J. Cavley (APS): when only one bunch
was present, the electron beam coordinates were zeroed out.

• The center_arrival_time feature of sdds_beam did not work correctly for the parallel ver-
sion, as reported by Jonas Björklund.

• The use_moments_output_values qualifier of the bunched_beam command did not work for
the parallel version.

• The full_grid_output mode of the frequency_map command provided incorrect results for
the diffusion for particles that got lost.

• The parameters output file from the run_setup command incorrectly reported the length
and angle of CSBEND elements when element division was invoked. This was reported by V.
Sajaev (APS).

• The amplification_factors command now respects link_elements commands.

• The tune_footprint command now optionally runs in major action command mode. The
inability to do so was pointed out by Y.-P. Sun (APS).

493

13.10.3 New and Modified Elements

• The long-deprecated DIRECTION parameter of the SCRAPER element has been removed; input
files using the SCRAPER element will need to be updated to remove this parameter and replace
it with equivalent INSERT_FROM parameter. One result is that the SCRAPER element can now
support two-sided scrapers.

• Added the SYSTEMATIC_MULTIPOLE_FACTOR,RANDOM_MULTIPOLE_FACTOR, and STEERING_MULTIPOLE_FACTOR
parameters to the KQUAD, KSEXT, and KOCT elements. These allow multiplying each of the in-
dicated higher multipole contributions by a factor.

• Added YAW and YAW_END parameters to UKICKMAP element. It’s useful in simulating canted
insertion devices.

• Added the SPEEDBUMP element, which provides a new kind of aperture formed by a semi-
circular bump protruding from one or both sides of the chamber.

• Added the DX, DY, and DZ misalignment parameters to the EHKICK, EVKICK, and EKICK ele-
ments. Also added RANDOM_MULTIPOLES parameter.

13.10.4 New and Modified Commands

• Added the inelastic_scattering command, which assists in computation of the inelastic
gas scattering lifetime and the distribution of lost particles. This is only available in the
parallel version.

• Added the generation_interval parameter to the ion_effects command to permit gen-
eration of ions only at every nth bunch. This was suggested by J. Calvey (APS).

• Added the ignore_elements command, which allows instructing elegant to ignore specified
elements in tracking. This can reduce overhead from “do-nothing” elements like markers and
monitors.

• The link_elements command can now create the source element name by editing the target
name.

• The momentum_aperture command now uses resources more efficiently for the parallel ver-
sion when output_mode=2. In particular, it honors the user-provided minimum δ values.
In addition, the domain decomposition was revised to better equalize the workload of the
processors.

13.10.5 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to check results against the serial or parallel versions and report issues to the developers.

• None.

13.10.6 Changes to Related Programs and Files

• Added the inelasticScatteringAnalysis script, a companion to the inelastic_scattering
command in Pelegant. It allows computing the lifetime and local loss rates from inelastic
gas scattering.

494

13.11 Highlights of What’s New in Version 33.1.1, 25 July 2017

Here is a summary of what’s changed since release 33.0.

13.11.1 Bug Fixes for Elements

• The BGGEXP element had a bug that prevented it from working when two elements used the
same data file. This was fixed.

• The BGGEXP element refused to run if m = 1 (dipole) was the main multipole, which prevented
modeling wigglers. This was reported by forum user Ji_Li and was fixed.

• The RFDF element had a bug in computing the energy-dependence of the time of flight, as
reported by Daniel Marx. This was fixed. The missing phase reference feature was also
implemented.

• Using the third-order matrix of the QUAD element with RADIAL=1 would result in a crash. This
was fixed. Forum user meisal reported the bug.

13.11.2 Bug Fixes for Commands

• Fixed a bug in load_parameters related to the allow_missing_elements and
allow_missing_parameters qualifiers. In runs with multiple load_parameters commands,
only the last values of these parameters were used.

• Fixed a bug in saving parameters when elements are subdivided: the lengths of certain
elements were incorrect in the saved file.

13.11.3 New and Modified Elements

• The IONEFFECTS element and the companion ion_effects command were added. These
allow simulation of the interaction of the beam with residual gas ions. J. Calvey (ANL) did
much of the work on these new features.

• Added SLICE element to provide turn-by-turn slice analysis.

• The CSBEND element now includes skew multipole errors up to eighth order. This involves
newly-computed expressions for the fields in curvilinear coordinates, so slight numerical
changes may be seen.

• The KSEXT and SEXT elements now support a skew-quad correction term. This was suggested
by Z. Duan (IHEP).

• Synchrotron radiation effects were added to the BGGEXP element, so that radiation effects from
essentially arbitrary fields can be included in both tracking and moments_output calculations.
There are limitations as described in the manual page.

• Improvements were made to memory management for numerous elements, chiefly CSBEND,
CSRCSBEND, CWIGGLER, FRFMODE, FTRFMODE, RFMODE, SLICE, TFBDRIVER, TRFMODE, ZTRANSVERSE,
and ZLONGIT. This can dramatically decrease memory usage in some cases.

• The TFBPICKUP and TFBDRIVER elements (used for turn-by-turn feedback) now have start-
and end-pass controls.

495

• The MATTER element now has start- and end-pass controls.

• To improve performance and simplify the code, the SQRT_ORDER parameter on the CSBEND,
FMULT, KOCT, KQUAD, KQUSE, and KSEXT elements is now nonfunctional. The default behavior
(exact square roots) is unchanged.

• The BMXYZ element now has the option for classical synchrotron radiation. It can also check
the divergence and curl of the fields to assess the quality of the field solution.

• Added the BX and BY parameters to the BGGEXP element, to allow imposing a uniform “ex-
ternal” magnetic field.

• It is now possible to interleave zero-length LSCDRIFT elements with CSRCSBEND elements with
CSR fields building up through the successive CSRCSBEND elements. This was added following
a related forum post by Aaron Fetterman.

13.11.4 New and Modified Commands

• Added the elastic_scattering command, which assists in computation of the elastic gas
scattering lifetime and the distribution of lost particles. This is only available in the parallel
version.

• Added bpm_output option to the correct command, which provides optional output of beam
position monitor readings after orbit or trajectory correction. This was suggested by V. Sajaev
(APS).

• The twiss_output command now records the location of the acceptance-limiting apertures
in parameters AxLocation and AyLocation.

• The track command has a new field, interrupt_file, which gives the name of a file to
monitor as a semaphore to interrupt the tracking. If the file is created or updated during
tracking, then tracking will terminate on completion of the next pass.

13.11.5 Changes Specific to Parallel Version

• The elastic_scattering command was added. It performs parallel tracking to determine
the angular acceptance at a series of s locations. The data is intended for use with the
script elasticScatteringAnalysis, which allows determination of the elastic gas scattering
lifetime and loss distribution. This command is presently only available in Pelegant, due to
the long runtime required.

13.11.6 Changes Specific to the GPU Version

The GPU version continues to be an alpha release and contains bugs. Users are encour-
aged to test results against the serial or parallel versions.

• None.

496

13.11.7 Changes to Related Programs and Files

• The computeGeneralizedGradients script (used to prepare data for the BGGEXP element)
did not work for odd multipole orders (e.g., dipole, sextupole, ...) or fields that are odd
functions of z. This was reported by forum user Ji Li and has been fixed, with the assistance
of R. Lindberg (APS).

• The program sddsmatchmoments was added. It allows generating a particle distribution to
match the moments from the moments_output command.

• The LFBFirSetup script was added. It helps set up FIR filters for longitudinal turn-by-turn
feedback.

• touschekLifetime can now use data from the SLICE element in elegant for slice-based
lifetime computations.

• The script removeBackDrifts was added. It allows post-processing s-dependent files to re-
move negative drifts, which improves the appearance of plots and is needed for certain types
of analysis.

• The program sddsemitproc now has the ability to specify the independent variable on the
commandline. This was suggested by forum user jan.

• The TFBFirSetup script, which helps set up FIR filters for transverse turn-by-turn feedback,
can now support filters with up to 30 terms.

13.12 Highlights of What’s New in Version 33.0, March 3, 2017

Here is a summary of what’s changed since release 32.0. Historical change logs are appended to
the end of this manual.

This version includes an alpha release of GPU-enabled code. The original GPU code was
developed by Tech-X corporation [51], with further work by R. Soliday (APS).

13.12.1 Bug Fixes for Elements

• The SREFFECTS element now correctly computes the equilibrium horizontal and vertical emit-
tances when Jx 6= 1. Previously, the computation used an equation that implicitly assumes
Jx = 1.

• The MALIGN element could cause spurious integer changes in the reported tunes if the DZ

parameter was negative. This problem, reported by V. Sajaev (APS), was fixed.

• A memory management bug related to the systematic and random multipole data store was
fixed. This in principle affected KQUAD, KSEXT, and other elements using the SYSTEMATIC_MULTIPOLES
and RANDOM_MULTIPOLES features. In testing, no effect was in fact observed.

13.12.2 Bug Fixes for Commands

• The correction_matrix_output command command were ignoring the monitor calibrations
(MONI, HMON, and VMON) values when use_response_from_computed_orbits = 1. This was
reported by V. Sajaev (APS).

497

• The steering_element command no longer aborts even if the declared steering corrector
appears not to kick the beam. This allows using unusual controls such as path length to steer
the beam. This issue was pointed out by V. Sajaev (APS).

• The load_parameters and save_lattice commands incorrectedly saved the edge angles and
other edge-related quantities for bending magnets that were reflected. This issue was fixed.
Previously-saved parameter files should be modified (e.g., remove the edge parameters) unless
the magnets had the same parameters for the entrance and exit. This problem was reported
by Y. Li (BNL).

• The rf_setup and moments_output commands will now run in a loop with find_aperture,
momentum_aperture, and frequency_map operations, if set for per-step execution. Previ-
ously, this would only happen for the track, analyze_map, and touschek_scatter com-
mands.

13.12.3 New and Modified Elements

• The EKICK, EHKICK, and EVKICK elements now support inclusion of multipole errors linked to
the correction strength.

• The steering kicks and steering multipoles in the KQUAD element are now implemented in the
body of the element, rather than at the ends.

• The WATCH element was improved so that the dt column in coordinate-logging mode and
the dCt column in parameter- and centroid-logging modes are more useful. In particular,
in normal cases these will now more reliably be centered on zero. One can also provide a
reference frequency relative to which the reference time is defined. This improvement grew
out of discussions with J. Calvey and T. Berenc (APS).

• The reported phases of the beam- and generator-induced parts of the voltage for the RFMODE
element RECORD file are now computed using a method that should be more reliable. This
improvement grew out of discussions with J. Calvey and T. Berenc (APS).

• The RECORD output from the RFMODE element now includes the phase of the net cavity voltage.
This was requested by M. Venturini (LBNL).

• The RFMODE element now supports injection of noise into the rf source and low-level rf system.
This is based on discussions with T. Berenc (APS).

• The SCRIPT element can now import particleID data from the script without attempting
to use this information for lost-particle accounting. This provides better functionality when
the particleID is used for other purposes, such as bunch membership.

• The TFBPICKUP and TFBDRIVER elements, used for bunch-by-bunch feedback, now allow 30-
term FIR filters, up from 15 turns in earlier versions.

• The TFBDRIVER element now accepts specification of the frequency and phase of the driver
cavity.

• Aperture enforcement inside KQUAD, KSEXT, KOCT, KQUSE, CSBEND, and CSRCSBEND elements
has been improved. In particular, the ELLIPTICAL, EXPONENT, YEXPONENT, and OPEN_SIDE

parameters of MAXAMP are now implemented. In addition, for the fourth-order integrator, the

498

apertures are no longer asserted at each integration step, but only after each slice (or “kick”,
to use the misleading terminology of the element parameters).

• Added the ALLOW_LONG_BEAM parameter to the ZLONGIT and ZTRANSVERSE elements.

13.12.4 New and Modified Commands

• The bunched_beam command can now be set to take the fully-coupled 6D bunch parameters
from the calculations of the moments_output command, provided the latter is used to compute
matched, equilibrium parameters. This was requested by forum user duanz.

• Added occurrence and positional filters for the steering_element command. This was re-
quested by V. Sajaev (ANL).

• Several informational printouts for the touschekScatter command are no longer shown by
default, but only if the verbosity control is set to a non-zero value. This makes short runs
more efficient.

• Compared to previous versions, the lost-particle data file (losses file requested by the
run_setup command) will exhibit changes in the order in which particles are recorded. This
was a result of reworking the code for lost particle management.

13.12.5 Changes Specific to Parallel Version

• None.

13.12.6 Changes to Related Programs and Files

• The program madto was renamed elegantto, to more accurately reflect what it does. It will
now translate elegant lattice files into MAD8 format.

13.13 Highlights of What’s New in Version 32.0, 5 Jan. 2017

Here is a summary of what’s changed since release 31.

13.13.1 Bug Fixes for Elements

• None.

13.13.2 Bug Fixes for Commands

• A bug was fixed in the amplification_factors command that resulted in a crash when the
corrected amplification factors were requested. This was reported by S. DiMitri (ELETTRA).

• A bug was fixed for twiss_output, which was incorrectly reporting the quantities
∂αx,y

∂δ
(parameters dalphax/dp and dalphay/dp in the output file) in some cases.

499

13.13.3 New and Modified Elements

• Added the BRANCH element, which permits branching between parts of a beamline based on
the number of passes executed.

• Apertures specified using MAXAMP or an external aperture file (using the aperture_data com-
mand) are now enforced inside CSBEND and CSRCSBEND elements. There may be small changes
in, for example, momentum acceptance as a result of this, particularly when gradient dipoles
are involved.

• The longitudinal location of losses inside KQUAD and KSEXT elements is now computed more
accurately. Previously, it was simply the start of the element.

• Removed the non-functional FRINGE parameter of the CSBEND element.

• The BGGEXP (B-field Generalized Gradient Expansion) element now supports symplectic in-
tegration using an implicit method, implemented by R. Lindberg (APS).

13.13.4 New and Modified Commands

• Added exclude parameter to chromaticity command, allowing exclusion of some sextupoles
that may match the list in the sextupole parameter.

• Added alter_at_each_step and alter_before_load_parametersparameters to the alter_elements
command, allowing better control of potential conflicts with load_parameters.

• The random number generator seed is now permuted bitwise in order to add a greater level
of apparent randomness. Thus, changing the seed by a small amount will now have a bigger
effect on the sequences generated, making it easier to deliberately perform several runs with
very distinct random values. This can be defeated using the global_settings command by
setting inhibit_seed_permutation=1. This issue was pointed out by V. Sajaev (APS).

13.13.5 Changes Specific to Parallel Version

• None.

13.13.6 Changes to Related Programs and Files

• ionTrapping — Added computation of the single-ion oscillation frequency.

13.14 Highlights of What’s New in Version 31.0, 1 Oct. 2016

Here is a summary of what’s changed since release 30.1.

13.14.1 Bug Fixes for Elements

• The touschek_scatter command had a bug when random multipoles where used on KQUAD

and KSEXT elements. In particular, these multipoles components were re-randomized for each
TSCATTER element. This was discovered and fixed by A. Xiao (ANL).

500

• The implementation of edge effects in the KQUAD element was using x′ and y′ in place of qx
and qy, and so was not symplectic. It also did not have the correct dependence on δ. These
issues were reported by R. Lindberg (ANL). A similar error was fixed in the implementation
of edge effects for CSBEND; this was fixed by Y.P. Sun (ANL). Practically speaking, we haven’t
noticed any significant change in results.

• There was a bug in the evaluation of systematic multipoles when using the second-order
integrator for KQUAD and KSEXT. The default fourth-order integrator did not have this issue.

• Higher-order path-length issues were fixed for the BRAT element. This issue was reported by
R. Lindberg (ANL).

• The steering kick calibration factors are no longer ignored on the KQUAD element.

• The BMXYZ and BMAPXY elements lacked dependence on the momentum deviation δ. This issue
was reported by R. Lindberg (ANL).

13.14.2 Bug Fixes for Commands

• None

13.14.3 New and Modified Elements

• Added the BGGEXP element, which performs tracking through magnetic fields constructed from
a generalized gradient expansion [50]. Although the integration is not symplectic, the fields
satisfy Maxwell’s equations exactly. A script, computeGeneralizedGradients, is provided
to assist in preparing input for this element. Advice from M. Venturini (LBNL) was helpful
in performing this work.

• Added separate specification of edge and body multipoles to the KQUAD and KSEXT elements.

• Added steering and steering multipoles to the KSEXT element.

• The BMXYZ element now allows independent specification of the insertion length and field map
length.

• The code for the KQUAD, KSEXT, MULT, and FMULT was improved to prevent underflows that
might occur in some odd cases, which would negatively affect accuracy.

• The LSRMDLR element now includes an option for a helical device. This was requested by
forum user zzhang and implemented by Y.-P. Sun (ANL).

• Two additional parameters, SampledParticles and SampledCharge were added to WATCH

files in coordinate mode. These are identical to Particles and Charge, respectively, except
when the FRACTION parameter is < 1. In that case, the latter parameters give the values
prior to sampling, while the new parameters give the parameters of the sampled fraction
of the bunch. Previously, Particles and Charge changed as FRACTION was changed. Note
that scripts that use the Particles and Charge may need modification since the meaning has
changed. Y. Ding (SLAC) pointed out this issue.

501

13.14.4 New and Modified Commands

• The analyze_map command can now report the map using canonical variables. It also has a
user-controlled accuracy parameter that can be used to eliminate spurious matrix elements.
R. Lindberg (ANL) helped with the development and testing.

• The touschek_scatter command now uses averaging of the loss rate over the interval be-
tween two TSCATTER elements instead of the local value at the element, which gives more accu-
rate estimates of the distribution of scattered particles. This change requires that TSCATTER
elements be inserted at the beginning and end of the beamline, which can be done using
add_at_end=1 and add_at_start=1 in the insert_elements command. This was imple-
mented by A. Xiao (ANL).

• The modulate_elements command now offers more control over verbose printouts, to help
reduce the volume of uninformative printouts. It also provides user control of the buffer
flushing interval for the record output file.

• The insert_elements command now has the option to insert an element at the beginning
of the beamline.

13.14.5 Changes Specific to Parallel Version

• None.

13.14.6 Changes to Related Programs and Files

• The script computeGeneralizedGradients was added to assist in preparing input for the
BGGEXP element.

• The scripts elasticScatteringLifetime and bremsstrahlungLifetime now support user-
specified gas composition. The Z values for carbon and oxygen were mixed up in some places
in these and related scripts, as pointed out by S. Tian (IHEP); this was fixed.

• The ionTrapping script now supports user-provided factors for inflating the emittance and
energy spread.

13.15 Highlights of What’s New in Version 30.1, 3 Aug. 2016

Here is a summary of what’s changed since release 30.0

13.15.1 Bug Fixes for Elements

• Fixed a bug in Touschek scattering simulation (TSCATTER element and touschek_scatter

command) that resulted in the random multipole components of KQUAD and KSEXT elements
being re-randomized for each TSCATTER element.

13.15.2 Bug Fixes for Commands

• Fixed a bug introduced in moments_output computations when CSBEND elements were present
with non-zero values of ETILT. Reported by V. Sajaev (ANL).

502

• Fixed a bug in Touschek scattering simulation (TSCATTER element and touschek_scatter

command) that resulted in the random multipole components of KQUAD and KSEXT elements
being re-randomized for each TSCATTER element.

13.15.3 New and Modified Elements

• Added edge multipoles to KQUAD element. This necessitated some rearrangement of the code,
so results might be slightly different even if this feature is not invoked.

• Added I/Q mode feedback to the RFMODE element.

13.15.4 New and Modified Commands

• None.

13.15.5 Changes Specific to Parallel Version

• Implemented exact normalized emittance calculations for the sigma output file of the run_setup
command and in WATCH output in parameter mode. J. Bjorklund pointed out the lack of cal-
culations in the parallel version.

• Fixed bug in assignment of particle ID values when using Halton sequences in the bunched_beam
command.

13.15.6 Changes to Related Programs and Files

• The program abrat (“Asymmetric Bend RAy tracing”) was added. It allows tracking elec-
trons through 2- and 3-D magnetic field maps. It is a commandline version of the BRAT

element.

• The script ionTrapping was added, providing simple ion trapping calculations for uniform
bunch trains. J. Calvey (APS) helped with debugging.

• The script computeSCTuneSpread was added to allow computation of space-charge tune
spread.

• The script radiationEnvelope now computes envelopes for central cone flux.

13.16 Highlights of What’s New in Version 30.0, 5 July 2016

Here is a summary of what’s changed since release 29.1:

13.16.1 Bug Fixes for Elements

• Fixed a memory leak in the FTABLE element.

503

13.16.2 Bug Fixes for Commands

• Fixed calculations of exact normalized emittance (error in equations) and implemented in par-
allel version. This bug impacted results in the sigma output file of the run_setup command
and in WATCH output in parameter mode. J. Bjorklund pointed out the lack of calculations
in the parallel version and provided an example run that helped discover the problem with
the serial version.

• The diffusionRate output from the frequency_map command is now computed as log10((∆ν2x+
∆ν2y)/n) instead of (log10(∆ν2x +∆ν2y))/n.

• Fixed a bug in bunched_beam whereby the centroids for a shell-type beam were offset from
zero. Reported by L. Emery (ANL).

• Fixed bug in moments_output when bending magnts with non-zero ETILT are present. When
this occurs, the number of slices for moments calculation is set to 1 for those elements, to
avoid numerical problems with the vertical orbit.

13.16.3 New and Modified Elements

• Added the LEFFECTIVE parameter for QUAD and KQUAD, which provides a convenient way to
change the effective length without changing the adjacent drift spaces. Also added the ability
to turn off the linear fringe field effects while keeping the nonlinear part, and to multiply the
nonlinear effects by a numerical factor.

• Added the BMXYZ element for straightforward integration through 3D field maps for straight
elements.

• Added the BRAT element, which is similar to BMXYZ but accommodates curved elements.
Elements may be asymmetric, e.g., longitudinal gradient dipoles.

• Added the FACTOR and THRESHOLD options to FTABLE. The former allows multiplying the fields
by a user-defined factor. The latter allows specifying the magnitude of the field below which
it is considered zero, which can help ensure numerical stability.

• The FTABLE element can accept the simple-to-create input files used by the BMXYZ element in
addition to the original input format.

• Results that depend on the transport matrix will show small changes for elements for which
the matrix is determined by tracking. The tracking-based method was modified to use a
larger number of sample points, increasing the accuracy.

13.16.4 New and Modified Commands

• Added the full_grid_output parameter to the frequency_map command, making it possible
to display frequency maps using sddscontour.

13.16.5 Changes Specific to Parallel Version

• Implemented exact normalized emittance calculations for the sigma output file of the run_setup
command and in WATCH output in parameter mode. J. Bjorklund pointed out the lack of cal-
culations in the parallel version.

504

• Fixed bug in assignment of particle ID values when using Halton sequences in the bunched_beam
command.

13.16.6 Changes to Related Programs and Files

• The program abrat (“Asymmetric Bend RAy tracing”) was added. It allows tracking elec-
trons through 2- and 3-D magnetic field maps. It is a commandline version of the BRAT

element.

• The script ionTrapping was added, providing simple ion trapping calculations for uniform
bunch trains. J. Calvey (APS) helped with debugging.

• The script computeSCTuneSpread was added to allow computation of space-charge tune
spread.

• The script radiationEnvelope now computes envelopes for central cone flux.

13.17 Highlights of What’s New in Version 29.1, 3 March 2016

Here is a summary of what’s changed since release 29.0:

13.17.1 Bug Fixes for Elements

• Fixed bugs in RECORD output from TRFMODE element for multi-step, single-pass runs. This
was fixed by A. Xiao (APS).

13.17.2 Bug Fixes for Commands

• The replace_elements command now respects quoted sequences in the new element defini-
tion.

13.17.3 New and Modified Elements

• LRWAKE now supports long-range quadrupole wakes. R. Lindberg (APS) provided helpful
discussion in this implementation.

• ILMATRIX now supports second-order tune shift with amplitude as well as path-length depen-
dence on amplitude.

• TFBPICKUP now supports horizontal and vertical offsets.

• Added logging of photon coordinates and angles to the CSBEND element. Works in serial mode
only.

• TRFMODE now supports interpolation within bins, giving smoother results.

13.17.4 New and Modified Commands

• alter_elements now has a occurrence-skip parameter, which would allow for example chang-
ing every other member of a group of elements.

• momentum_aperture now allows specifying that WATCH elements remain active during momen-
tum aperture determination.

505

• frequency_map was modified to include the path-length in the output file, which can be used
to determine the dependence of the path length of the betatron amplitude.

13.17.5 Changes Specific to Parallel Version

• None.

13.17.6 Changes to Related Programs and Files

• The script prepareTAPAs was added, which allows processing files from twiss_output into
a form that is accepted by the Android App TAPAs [46].

• The script makeSummedCsrWake was added, which allows making a CSR wake that sums up
contributions from dipoles with various lengths and bending radii.

• The script TFBFirSetup was added, which allows generating FIR filters for turn-by-turn
feedback using TFBDRIVER and TFBPICKUP elements.

• ibsEmittance can now perform intrabeam scattering calculations for non-gaussian longitu-
dinal distributions.

• computeCoherentFraction now uses λ/4π for the radiation emittance to be consistent with
sddsbrightness.

• longitCalcs now computes the bucket-half-height even when a harmonic cavity is powered.

13.18 Highlights of What’s New in Version 29.0, 15 Jan. 2016

Here is a summary of what’s changed since release 28.1:

13.18.1 Bug Fixes for Elements

• Fixed a bug in the MATR element that would crop up in multi-step runs, causing a crash or
lock-up. This was reported by P. Emma (SLAC).

• Fixed a bug in the RFMODE element that resulted in a few percent error between the voltage
seen by the beam and the feedback-regulated voltage. T. Berenc (ANL) helped resolve this.

• The output file feature was restored for the FTRFMODE element.

• The TFBDRIVER and TFBPICKUP feedback elements can now handle changes in the number of
bunches.

• The drive limit for TFBDRIVER is now imposed after application of the filter, rather than
before.

• The KQUAD element now has a valid associated transfer matrix for RADIAL=1. This bug was
reported by forum user libov.

506

13.18.2 Bug Fixes for Commands

• The touschek_scatter command now behaves as a regular major action command, meaning
that error generation, scanning, parameter loading, etc. behave as expected.

• Fixed a bug in the correct_tunes command that resulted in a crash when n_iterations=0

and would also have resulted in invalid data in the log file for mixed element types. This was
reported by V. Sajaev (ANL).

• Fixed a bug in the chromaticity command that resulted in a crash when n_iterations=0

and would also have resulted in invalid data in the log file for mixed element types.

• Fixed a bug related to optimization of the chromatic derivative of alpha_x. The value
provided was actually the chromatic derivative of betax. A related error gave incorrect
results for the use_linear_chromatic_matrix mode of the track command.

• Previous versions of this manual indicated that the find_aperture command provided a
quantity Area giving the dynamic aperture area for optimization. The quantity is in fact
called DaArea. This was reported by S. Hilbrich (TU Dortmund).

• Fixed a bug in the optimization feature that resulted in the user’s weighting factors being
ignored. This was pointed out by A. Zholents (ANL).

• Fixed a bug in the alter_elements command that caused string values not to be reflected in
the output file created with save_lattice. This was reported by T. Pulampong (SLRI/DLS).

13.18.3 New and Modified Elements

• Added nonlinear symplectic fringe field model to CSBEND and CSRCSBEND, based on
theoretical work of K. Hwang (IU) [45]. The implementation was performed by Y. Sun
(APS) with assistance from K. Hwang and M. Borland.

• Added EKICKER, EHKICK, and EVKICK, which provide various flavors of steering correctors
using an Exact model. These may be used in place of the existing KICKER, HKICK, and VKICK

elements. The need for this was pointed out by L. Yang (BNL).

• The MATTER element now supports arrays of slits. This can be used, for example, to model a
double-slit spoiler for producing two pulses in an FEL.

• The ECOL and RCOL collimator elements now support an INVERT parameter to allow simulation
of an obstruction instead of an opening.

• The output files from the WATCH element in centroid and parameter mode now contain the
beam charge, provided that a CHARGE element is in the beamline.

• Elements that read multipole error files (e.g., KQUAD and KSEXT) now share data internally
rather than each reading the data files separately. This provides a significant speed improve-
ment for massively parallel execution in particular.

• The MALIGN element was improved to allow optionally applying misalignments to only part
of the beam, based on the particle ID.

• The RFMODE element now has a feature that allows “muting” the rf generator on a specified
pass, to simulate a trip of the rf source.

507

• The voltage “preloading” feature of the RFMODE element now works even when rf feedback is
used.

• In order to eliminate problems with the parallel version, the IBSCATTER element no longer
has a separate CHARGE parameter. Instead, the CHARGE element should be used.

13.18.4 New and Modified Commands

• The analyze_map command can now determine the nonlinear transport matrix up to third
order based on tracking data, using the method described in [4]. Parallel tracking is used for
this command in Pelegant. Previously, the analysis was limited to the linear matrix. Also,
the terminal lattice functions and their chromatic derivatives are determined from the map
for both transport lines and rings. This was requested by Y. Hao (BNL) and L. Yang (BNL).

• The correct_tunes and chromaticity commands now include a weighting factor that results
in minimization of the strength changes in the event that more than two familes are provided
for correction. (In the future this will be replaced with an SVD-based implemenetation.)

• Added to closed_orbit and correct commands the ability to use multi-turn tracking to
determine the approximate orbit. This was suggested by V. Sajaev (ANL), and is helpful
when the orbit convergence is poor.

• The output in the run_setup centroid file now contains the beam charge, provided that a
CHARGE element is in the beamline.

• The run_control command now includes a variable, n_passes_fiducial, that allows spec-
ifying a different number of tracking passes for fiducialization than for tracking. For ring
fiducialization, this should probably always be 1.

• Most output files from elegant now include a parameter giving the SVN revision number of
the version used to create the output.

13.18.5 Changes Specific to Parallel Version

• The analyze_map command, which was improved as described above, can now use parallel
resources.

• A bug was fixed in the center_on_orbit feature of the track command. The bug caused
the particles on each processor to be offset by different amounts related to the centroid of the
local particles only. This was reported by M. Furseman (DLS).

• Fixed a bug in FTABLE introduced in version 26.0. The bug would cause the program to crash.

• Memory management was improved in the touschek_scatter command, allowing a larger
number of particles to be utilized.

• The SCRIPT element would cause a crash when twiss_output, matrix_output, or similar
commands were included but when tracking was required to determine the transfer matrix of
the element. This was fixed.

• Tracking instigated via the track command is now more forgiving of uneven particle losses
among cores. In particular, the program should no longer crash if one core has lost all of its
particles or all of the particles in a particular bunch.

508

• The stop_tracking_particle_limit feature of the track command now works in the par-
allel version.

• Instead of exiting, the parallel version now simply ignores the slice_anlysis command.

13.18.6 Changes to Related Programs and Files

• The script reorganizeMmap was added to convert momentum aperture data from Pelegant

in output_mode=1 into the same form as produced by elegant. This was a result of corre-
spondence with S. Tian (IHEP).

• A bug was fixed in elegant2astra that resulting in slightly erroneous values for the longitu-
dinal coordinate.

• The beamLifetimeCalc can now perform approximate Touschek lifetime calculations for po-
larized beams. This was added by A. Xiao (ANL) following an inquiry from forum user
marlibgin.

13.19 Highlights of What’s New in Version 28.1.0, 23 July 2015

Here is a summary of what’s changed since release 28.0:

13.19.1 Bug Fixes for Elements

• The ROTATE element was not affecting the floor coordinates. This was found and fixed by
A. Xiao (APS).

• The END_PASS parameter on SCATTER now works as expect, after removal of a one-pass offset.

13.19.2 Bug Fixes for Commands

• A bug was fixed that caused a crash when a 1-line aperture search was performed. This was
reported by Guohui Wei (JLab).

13.19.3 New and Modified Elements

• The TFBDRIVER element now has the ability to measure the beam phase for use in longitudinal
feedback. Previously, only momentum-based input was available for longitudinal feedback.

13.19.4 New and Modified Commands

• The ramp_elements and modulate_elements commands now have the ability to write a
record of their output values.

• The run_setup command now has options, intended primarily for developers, to turn on
memory usage and executing time monitoring during tracking.

• The units given for loss rate the output files from touschek_scatter were incorrect and were
fixed. Results were not affected. (A. Xiao, ANL)

509

• The tune_footprint command was improved in several ways. It is now possible to ignore
half-integer resonances. The upper and lower bounds of the chromatic tune footprints are
now available for optimization. It’s now possible to turn off either chromatic or amplitude
tune footprint deterimination.

• The optimization_setup command allows suppressing particle tracking in order to improve
performance in some unusual cases.

• The correct_tunes command can now utilize any element that has the K1 parameter.

• The chromaticity command can now utilize any element that has the K2 parameter.

13.19.5 Changes for Parallel Version Only

• Fixed a bug that affected tracking when orbit correction was used, start_from_centroid=1,
and particle distribution was not random across processors.

• Warnings about ρ > 106 m are now issued by the parallel version, as for the serial version.

• Memory usage logging to WATCH output files now sums the memory across all cores, rather
than just the master core.

• A memory leak was fixed in the ZTRANSVERSE element that sometimes caused the program
to crash. This was reported by R. Lindberg (ANL).

• The output of the beam charge in the ZLONGIT wake output file was corrected; previously, it
only showed the charge on one core.

• The frequency_map command now provides an estimate of the time needed to complete.

13.19.6 Changes to Related Programs and Files

• The program sddsbunchingfactor is now part of the distribution.

13.20 Highlights of What’s New in Version 28.0.0, 18 June 2015

Here is a summary of what’s changed since release 27.1.0:

13.20.1 Bug Fixes for Elements

• The WATCH element was improved so that the dCt column (in parameter or coordinate mode)
and dt column (in coordinate mode) no longer exhibit fictitious drift due to precision limita-
tions in simulations of rings with many turns.

• For numerical reasons, any CSBEND with ρ > 106 m is replaced with another element. In the
past, an EDRIFT was used, which would produce incorrect results if the element had non-zero
K1 or K2. This was fixed.

13.20.2 Bug Fixes for Commands

• None.

510

13.20.3 New and Modified Elements

• The TFBPICKUP and TFBDRIVER elements, which provide a turn-by-turn feedback capability,
now support multi-bunch feedback. In addition, support was added for longitudinal feedback
as well as sample/update intervals greater than one turn.

• The CSRDRIFT element can now also include longitudinal space charge, using the algorithm
from the LSCDRIFT element.

• The CSBEND element has a new feature that allows suppression of spurious trajectory offsets
that result from limitations of the symplectic integration routine. This feature is controlled
using the REFERENCE_CORRECTION parameter.

• The input of multipole errors for KQUAD and KSEXT elements was modified so that the input
columns have more transparent names. Previously, the names caused some confusion. Files
that worked with previous versions are still accepted.

• The MARK element with FITPOINT=1 now stores the emittances of the three modes as e1m,
e2m, and e3m for optimization if moments_output is invoked. This deficiency was pointed out
by forum user marlibgin.

13.20.4 New and Modified Commands

• The transmute_elements command now does a better job of copying common parameters
between the old and new element types. In the past, only the length was preserved. A.
Zholents (ANL) reported this issue.

• The floor_coordinates command has a new parameter, store_vertices, which allows
requesting that dipole vertex points be stored for use in optimization.

• The twiss_output command now stores the acceptances Ax and Ay for use in optimization.

13.20.5 Changes for Parallel Version Only

• None

13.20.6 Changes to Related Programs and Files

• None.

511

References

[1] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, N.J., second edition, 1988.

[2] H. Grote, F. C. Iselin, “The MAD Program–Version 8.1,” CERN/SL/90-13(AP), June 1991.

[3] K. L. Brown, R. V. Servranckx, “First- and Second-Order Charged Particle Optics,” SLAC-
PUB-3381, July 1984.

[4] M. Borland, “A High-Brightness Thermionic Microwave Electron Gun,” SLAC-Report-402,
February 1991, Stanford University Ph.D. Thesis.

[5] H. A. Enge, “Achromatic Mirror for Ion Beams,” Rev. Sci. Inst., 34(4), 1963.

[6] M. Borland, private communication.

[7] W. H. Press, et al, Numerical Recipes in C, Cambridge University Press, Cambridge, 1988.

[8] M. Borland, “A Self-Describing File Protocol for Simulation Integration and Shared Postpro-
cessors,” Proc. 1995 PAC, May 1-5, 1995, Dallas, Texas, pp. 2184-2186 (1996).

[9] M. Borland, “A Universal Postprocessing Toolkit for Accelerator Simulation and Data Anal-
ysis,” Proc. 1998 ICAP Conference, Sept. 14-18, 1998, Monterey, California, to be published.

[10] T. P. Green, “Research Toward a Heterogeneous Networked Computer Cluster: The Dis-
tributed Queuing System Version 3.0,” SCRI Technical Publication, 1994.

[11] M. Borland et al, “Start-to-End Jitter Simulation of the LCLS,” Proceedings of the 2001
Particle Accelerator Conference, Chicago, 2001.

[12] M. Borland and L. Emery, “Tracking Studies of Top-Up Safety for the Advanced Photon
Source,”, Proceedings of the 1999 Particle Accelerator Conference, New York, 1999, pg 2319-
2321.

[13] M. Xie, “Free Electron Laser Driven by SLAC LINAC”.

[14] S. Reiche, NIM A 429 (1999) 242.

[15] J.D. Bjorken, S.K. Mtingwa, “Intrabeam Scattering,” Part. Acc. Vol. 13, 1983, 115-143.

[16] K. Halbach, “First Order Perturbation Effects in Iron-Dominated Two-Dimensional Symme-
trial Multipoles”, NIM 74-1, 1969, 147-164.

[17] J. D. Jackson, Clasical Electrodynamics, second edition.

[18] G. Ripken, DESY Report No. R1-70/04, 1970 (unpublished).

[19] Handbook of Accelerator Physics and Engineering, A. Chao and M. Tigner eds., 1998.

[20] Ya. S. Derbenev, J. Rossbach, E. L. Saldin, V. D. Shiltsev, “Microbunch Radiative Tail-Head
Interaction,” September 1995, TESLA-FEL 95-05.

[21] A. Xiao et al., “Direct Space-Charge Calculation in elegant and its Application to the ILC
Damping Ring,” Proc. PAC2007, 3456-3458.

512

[22] Z. Huang et al., Phys. Rev. ST Accel. Beams 7 074401 (2004).

[23] A. Piwinski, “ The Touschek effect in strong focusing storage rings,” DESY-98-179, Nov 1998.

[24] A. Xiao et al., “Touschek Effect Calculation and its Application to a Transport Line,” Proc.
PAC07, 3453-3455 (2007).

[25] W. Warnock, “Shielded Coherent Synchrotron Radiation and Its Effect on Very Short
Bunches,” SLAC-PUB-5375, 1990.

[26] T. Agoh and K. Yokoya, “Calculation of coherent synchrotron radiation using mesh,” Phys.
Rev. ST Accel. Beams 7, 054403 (2004).

[27] P. Elleaume, “A New Approach to Electron Beam Dynamics in Undulators and Wigglers,”
Proc. EPAC 1992, 661-663.

[28] http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia

[29] J. Bengtsson, ”The Sextupole Scheme for the Swiss Light Source (SLS): An Analytic Ap-
proach,” SLS Note 9/97, March 7, 1997. (Corrections to several typos were supplied by W.
Guo, NSLS.)

[30] K. Flöttmann, Astra User Manual, http://www.desy.de/ mpyflo/Astra dokumentation/

[31] J. Qiang et al., J. Comp. Phys. 163, 434 (2000).

[32] V. N. Aseev et al., Proc. PAC05, 2053-2055 (2005); ASCII version 39 from B. Mustapha.

[33] H. Chi et al., Mathematics and Computers in Simulation 70 (2005) 9-21.

[34] D. Zhou et al., “Explicit maps for the fringe field of a quadrupole,” Proc. IPAC10.

[35] J. Irwin et al., “Explicit soft fringe maps of a quadrupole,” Proc. PAC95.

[36] C. X. Wang, “Explicit Formulas for 2nd-order Driving Terms due to Sextupoles and Chromatic
Effects of Quadrupoles,” ANL/APS/LS-330, March 10, 2012.

[37] J. Bengtsson and J. Irwin, “Analytical Calculations of Smear and Tune Shift,” SSC-232, Feb.
1990.

[38] K. Bane, “Corrugated Pipe as a Beam Dechirper,” SLAC-PUB-14925, April 2012.

[39] Y.S. Tsai, Rev. Mod. Phys. 46, 815 (1974)

[40] A. Wrulich, CERN Accelerator School 94-01, Vol. 1, 409 (1994).

[41] J. LeDuff, NIM A 239 (1985) 83-101.

[42] A. Franchi et al., Phys. Rev. ST Accel. Beams 17, 074001 (2014).

[43] . K. Floettmann, Phys. Rev. ST Accel. Beams 6, 034202 (2003).

[44] T. Berenc, M. Borland, and R. R. Lindberg, “Modeling RF Feedback in Elegant for Bunch-
Lengthening Studies for the Advanced Photon Source Upgrade,” Proc. of IPAC15, MOPMA006
(2015).

513

[45] K. Hwang and S. Y. Lee, “Dipole fringe field thin map for compact synchrotrons”, Phys. Rev.
ST Accel. Beams 18, 122401, 2015; K. Hwang, “On intrinsic nonlinear particle motion in
compact synchrotrons,” Indiana University Ph. D. Thesis, 2015.

[46] M. Borland, “Android application for accelerator physics and engineering calculations,” Proc.
of PAC 2013, 1364-1366.

[47] T. Nakamura et al., “Transverse bunch-by-bunch feedback system for the SPRing-8 Storage
Ring,” Proc. of EPAC 2004, 2649.

[48] A. Chao et al., “Tune shifts of bunch trains due to resistive vacuum chambers without circular
symmetry,” Phys. Rev. ST Accel. Beams, 5, 111001 (2002).

[49] Y. Bacconier and G. Brianti, CERN/SPS/80-2 (1980).

[50] M. Venturini and A. Dragt, “Accurate computation of transfer maps from magnetic field data,”
NIM A 427 (1999) 387-392.

[51] J. R. King, I. V. Pogorelov, M. Borland, R. Soliday, K. Amyx, “Current status of the GPU-
Accelerated version of elegant,” Proc. IPAC15, 623 (2015).

[52] M. Bassetti, G. Erskine, CERN ISR TH/80-06 (1980).

[53] B. Buesing, private communication, 2018.

[54] R. Lindberg, private communication, 2018.

[55] Y.-P. Sun and C.-Y. Yao, “Tracking With Space Harmonics in ELEGANT Code,” Proc. NA-
PAC19.

[56] Y. Li et al., “Fast dynamic aperture optimization with reversal integration,” arXiv:1912.00121,
30 November 2019.

514

	Highlights of What's New in Version 2019.4.0
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the MPI Parallel Version
	Changes Specific to the GPU Version
	Changes to Related Programs and Files
	Known Bugs, Problems, and Limitations

	Credits
	Introduction
	Program Philosophy
	Capabilities of elegant

	Digression on the Longitudinal Coordinate Definition
	Fiducialization in elegant
	Preparing beams for bunch-mode simulations
	Namelist Command Dictionary
	Commandline Syntax
	General Command Syntax
	Setup and Action Commands
	Table of elegant commands and their functions
	alter_elements
	amplification_factors
	analyze_map
	aperture_data
	bunched_beam
	change_particle
	chaos_map
	chromaticity
	closed_orbit
	correct
	correction_matrix_output
	correct_tunes
	coupled_twiss_output
	divide_elements
	elastic_scattering
	error_element
	error_control
	find_aperture
	floor_coordinates
	frequency_map
	global_settings
	ignore_elements
	inelastic_scattering
	insert_elements
	insert_sceffects
	ion_effects
	linear_chromatic_tracking_setup
	link_control
	link_elements
	load_parameters
	matrix_output
	modulate_elements
	moments_output
	momentum_aperture
	optimize
	optimization_constraint
	optimization_covariable
	optimization_setup
	parallel_optimization_setup
	optimization_term
	optimization_variable
	print_dictionary
	ramp_elements
	rf_setup
	replace_elements
	rpn_expression
	rpn_load
	run_control
	run_setup
	sasefel
	save_lattice
	sdds_beam
	semaphores
	set_reference_particle_output
	slice_analysis
	subprocess
	steering_element
	touschek_scatter
	transmute_elements
	tune_footprint
	twiss_analysis
	twiss_output
	track
	tune_shift_with_amplitude
	vary_element

	Specialized Tools for Use with elegant
	abrat
	astra2elegant
	computeGeneralizedGradients
	coreEmittance
	csrImpedance
	doubleDist6
	haissinski
	ibsEmittance
	ionTrapping
	elegantto
	sddsanalyzebeam
	sddsbrightness
	sddsbunchingfactor
	sddsemitproc
	sddsfindresonances
	sddsfluxcurve
	sddsmatchtwiss
	sddsrandmult
	sddsurgent
	smoothDist6
	TFBFirSetup
	touschekLifetime
	view3dGeometry

	Accelerator and Element Description
	Magnet Strength

	Element Dictionary
	ALPH—An alpha magnet implemented as a matrix, up to 3rd order.
	APCONTOUR—An aperture (or its inverse) defined by (x, y) points in an SDDS file.
	BGGEXP—A magnetic field element using generalized gradient expansion.
	BMAPXY—A map of Bx and By vs x and y.
	BMXYZ—A map of (Bx, By, Bz) vs (x, y, z), for straight elements only
	BOFFAXE—A straight magnetic field element using off-axis expansion from an on-axis derivative.
	BRANCH—Conditional branch instruction to jump to another part of the beamline
	BRAT—Bending magnet RAy Tracing using (Bx, By, Bz) vs (x, y, z).
	BUMPER—A time-dependent kicker magnet with optional spatial dependence of the kick and no fringe effects. The waveform is in SDDS format, with time in seconds and amplitude normalized to 1. The optional spatial dependence is also specified as an SDDS file.
	CCBEND—A canonically-integrated straight dipole magnet, assumed to have multipoles defined in Cartesian coordinates.
	CENTER—An element that centers the beam transversely on the ideal trajectory.
	CEPL—A numerically-integrated linearly-ramped electric field deflector.
	CHARGE—An element to establish the total charge of a beam. Active on first pass only. If given, overrides all charge specifications on other elements.
	CLEAN—Cleans the beam by removing outlier particles.
	CORGPIPE—A corrugated round pipe, commonly used as a dechirper in linacs.
	CSBEND—A canonical kick sector dipole magnet.
	CSRCSBEND—Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.
	CSRDRIFT—A follow-on element for CSRCSBEND that applies the CSR wake over a drift.
	CWIGGLER—Tracks through a wiggler using canonical integration routines of Y. Wu (Duke University).
	DRIF—A drift space implemented as a matrix, up to 2nd order. Use EDRIFT for symplectic tracking.
	DSCATTER—A scattering element to add random changes to particle coordinates according to a user-supplied distribution function
	ECOL—An elliptical collimator.
	EDRIFT—Tracks through a drift with no approximations (Exact DRIFT).
	EHKICK—A horizontal steering dipole implemented using an exact hard-edge model
	EKICKER—A combined horizontal/vertical steering dipole implemented using an exact hard-edge model
	EMATRIX—Explicit matrix input with data in the element definition, rather than in a file.
	EMITTANCE—Applies a linear transformation to the beam to force the emittance to given values.
	ENERGY—An element that matches the central momentum to the beam momentum, or changes the central momentum or energy to a specified value.
	EVKICK—A vertical steering dipole implemented using an exact hard-edge model
	FLOOR—Sets floor coordinates
	FMULT—Multipole kick element with coefficient input from an SDDS file.
	FRFMODE—One or more beam-driven TM monopole modes of an RF cavity, with data from a file.
	FTABLE—Tracks through a magnetic field which is expressed by a SDDS table.
	FTRFMODE—One or more beam-driven TM dipole modes of an RF cavity, with data from a file.
	GFWIGGLER—Tracks through a wiggler using generate function method of J. Bahrdt and G. Wuestefeld (BESSY, Berlin, Germany).
	HISTOGRAM—Request for histograms of particle coordinates to be output to SDDS file.
	HKICK—A horizontal steering dipole implemented as a matrix, up to 2nd order. Use EHKICK for symplectic tracking.
	HKPOLY—Applies kick according to a Hamiltonian that's a polynomial function of x and y together with a generalized drift also given as a polynomial of qx and qy
	HMON—A horizontal position monitor, accepting a rpn equation for the readout as a function of the actual position (x).
	IBSCATTER—A simulation of intra-beam scattering.
	ILMATRIX—An Individualized Linear Matrix for each particle for fast symplectic tracking with chromatic and amplitude-dependent effects
	IONEFFECTS—Simulates ionization of residual gas and interaction with the beam.
	KICKER—A combined horizontal-vertical steering magnet implemented as a matrix, up to 2nd order. For time-dependent kickers, see BUMPER.
	KOCT—A canonical kick octupole.
	KPOLY—A thin kick element with polynomial dependence on the coordinates in one plane.
	KQUAD—A canonical kick quadrupole.
	KQUSE—A canonical kick element combining quadrupole and sextupole fields.
	KSEXT—A canonical kick sextupole, which differs from the MULT element with ORDER=2 in that it can be used for chromaticity correction.
	LMIRROR—A mirror for light optics
	LRWAKE—Long-range (inter-bunch and inter-turn) longitudinal and transverse wake
	LSCDRIFT—Longitudinal space charge impedance
	LSRMDLTR—A non-symplectic numerically integrated planar undulator including optional co-propagating laser beam for laser modulation of the electron beam.
	LTHINLENS—A thin lens for light optics
	MAGNIFY—An element that allows multiplication of phase-space coordinates of all particles by constants.
	MALIGN—A misalignment of the beam, implemented as a zero-order matrix.
	MAPSOLENOID—A numerically-integrated solenoid specified as a map of (Bz, Br) vs (z, r).
	MARK—A marker, equivalent to a zero-length drift space.
	MATR—Explicit matrix input from a text file, in the format written by the print_matrix command.
	MATTER—A Coulomb-scattering and energy-absorbing element simulating material in the beam path.
	MAXAMP—A collimating element that sets the maximum transmitted particle amplitudes for all following elements, until the next MAXAMP.
	MBUMPER—A time-dependent multipole kicker magnet. The waveform is in SDDS format, with time in seconds and amplitude normalized to 1.
	MHISTOGRAM—Request for multiple dimensions (1, 2, 4 or 6) histogram output of particle coordinates.
	MODRF—A first-order matrix RF cavity with exact phase dependence, plus optional amplitude and phase modulation.
	MONI—A two-plane position monitor, accepting two rpn equations for the readouts as a function of the actual positions (x and y).
	MRFDF—Zero-length Multipole RF DeFlector from dipole to decapole
	MULT—A canonical kick multipole.
	NIBEND—A numerically-integrated dipole magnet with various extended-fringe-field models.
	NISEPT—A numerically-integrated dipole magnet with a Cartesian gradient.
	OCTU—An octupole implemented as a third-order matrix. Use KOCT for symplectic tracking.
	PEPPOT—A pepper-pot plate.
	PFILTER—An element for energy and momentum filtration.
	QUAD—A quadrupole implemented as a matrix, up to 3rd order. Use KQUAD for symplectic tracking.
	QUFRINGE—An element consisting of a linearly increasing or decreasing quadrupole field.
	RAMPP—A momentum-ramping element that changes the central momentum according to an SDDS-format file of the momentum factor vs time in seconds.
	RAMPRF—A voltage-, phase-, and/or frequency-ramped RF cavity, implemented like RFCA.
	RBEN—A rectangular dipole, implemented as a SBEND with edge angles, up to 2nd order. Use CSBEND for symplectic tracking.
	RCOL—A rectangular collimator.
	RECIRC—An element that defines the point to which particles recirculate in multi-pass tracking
	REFLECT—Reflects the beam back on itself, which is useful for multiple beamline matching.
	REMCOR—An element to remove correlations from the tracked beam to simulate certain types of correction.
	RFCA—A first-order matrix RF cavity with exact phase dependence.
	RFCW—A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.
	RFDF—A simple traveling or standing wave deflecting RF cavity.
	RFMODE—A simulation of a beam-driven TM monopole mode of an RF cavity.
	RFTM110—Tracks through a TM110-mode (deflecting) rf cavity with all magnetic and electric field components. NOT RECOMMENDED—See below.
	RFTMEZ0—A TM-mode RF cavity specified by the on-axis Ez field.
	RIMULT—Multiplies radiation integrals by a given factor. Use to compute emittance for collection of various types of cells.
	RMDF—A linearly-ramped electric field deflector, using an approximate analytical solution FOR LOW ENERGY PARTICLES.
	ROTATE—An element that rotates the beam about the longitudinal axis.
	SAMPLE—An element that reduces the number of particles in the beam by interval-based or random sampling.
	SBEN—A sector dipole implemented as a matrix, up to 2nd order. Use CSBEND for symplectic tracking.
	SCATTER—A scattering element to add gaussian random numbers to particle coordinates.
	SCMULT—Tracks through a zero length multipole to simulate space charge effects
	SCRAPER—A collimating element that sticks into the beam from one side only. The directions 0, 1, 2, and 3 are from +x, +y, -x, and -y, respectively.
	SCRIPT—An element that allows transforming the beam using an external script.
	SEXT—A sextupole implemented as a matrix, up to 3rd order. Use KSEXT for symplectic tracking.
	SHRFDF—Simulation through space harmonics of zero length deflecting cavity.
	SLICE—Performs slice-by-slice analysis of the beam for output to a file.
	SOLE—A solenoid implemented as a matrix, up to 2nd order.
	SPEEDBUMP—Simulates a semi-circular protuberance from one or both walls of the chamber.
	SREFFECTS—Lumped simulation of synchrotron radiation effects (damping and quantum excitation) for rings.
	STRAY—A stray field element with local and global components. Global components are defined relative to the initial beamline direction.
	TAPERAPC—A tapered aperture that is a section of a circular cylinder.
	TAPERAPE—A tapered elliptical aperture.
	TAPERAPR—A tapered rectangular aperture.
	TFBDRIVER—Driver for a turn-by-turn feedback loop
	TFBPICKUP—Pickup for a turn-by-turn feedback loop
	TMCF—A numerically-integrated accelerating TM RF cavity with spatially-constant fields.
	TRCOUNT—An element that defines the point from which transmission calculations are made.
	TRFMODE—A simulation of a beam-driven TM dipole mode of an RF cavity.
	TRWAKE—Transverse wake specified as a function of time lag behind the particle.
	TSCATTER—An element to simulate Touschek scattering.
	TUBEND—A special rectangular bend element for top-up backtracking.
	TWISS—Sets Twiss parameter values.
	TWLA—A numerically-integrated first-space-harmonic traveling-wave linear accelerator.
	TWMTA—A numerically-integrated traveling-wave muffin-tin accelerator.
	TWPL—A numerically-integrated traveling-wave stripline deflector.
	UKICKMAP—An undulator kick map (e.g., using data from RADIA).
	VKICK—A vertical steering dipole implemented as a matrix, up to 2nd order. Use EVKICK for symplectic tracking.
	VMON—A vertical position monitor, accepting a rpn equation for the readout as a function of the actual position (y).
	WAKE—Longitudinal wake specified as a function of time lag behind the particle.
	WATCH—A beam property/motion monitor–allowed modes are centroid, parameter, coordinate, and fft.
	WIGGLER—A wiggler or undulator for damping or excitation of the beam.
	ZLONGIT—A simulation of a single-pass broad-band or functionally specified longitudinal impedance.
	ZTRANSVERSE—A simulation of a single-pass broad-band or functionally-specified transverse impedance.

	Examples
	The rpn Calculator
	Change Log
	Highlights of What's New in Version 2019.3.0
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the MPI Parallel Version
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 2019.2.1
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the MPI Parallel Version
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 2019.1.1
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the MPI Parallel Version
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 35.1.0
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the MPI Parallel Version
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 35.0.1
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the MPI Parallel Version
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 34.4.0
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the MPI Parallel Version
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 34.3.0, June 14, 2018
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the MPI Parallel Version
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 34.2.0, March 22, 2018
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 34.1.0, 27 February 2018
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 34.0, 31 October 2017
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 33.1.1, 25 July 2017
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to Parallel Version
	Changes Specific to the GPU Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 33.0, March 3, 2017
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to Parallel Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 32.0, 5 Jan. 2017
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to Parallel Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 31.0, 1 Oct. 2016
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to Parallel Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 30.1, 3 Aug. 2016
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to Parallel Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 30.0, 5 July 2016
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to Parallel Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 29.1, 3 March 2016
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to Parallel Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 29.0, 15 Jan. 2016
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes Specific to Parallel Version
	Changes to Related Programs and Files

	Highlights of What's New in Version 28.1.0, 23 July 2015
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes for Parallel Version Only
	Changes to Related Programs and Files

	Highlights of What's New in Version 28.0.0, 18 June 2015
	Bug Fixes for Elements
	Bug Fixes for Commands
	New and Modified Elements
	New and Modified Commands
	Changes for Parallel Version Only
	Changes to Related Programs and Files

